An open API service indexing awesome lists of open source software.

https://github.com/salesforce/pcl

PyTorch code for "Prototypical Contrastive Learning of Unsupervised Representations"
https://github.com/salesforce/pcl

contrastive-learning pre-trained-model representation-learning self-supervised-learning unsupervsied-learning

Last synced: 3 months ago
JSON representation

PyTorch code for "Prototypical Contrastive Learning of Unsupervised Representations"

Awesome Lists containing this project

README

        

## Prototypical Contrastive Learning of Unsupervised Representations (Salesforce Research)

This is a PyTorch implementation of the PCL paper:


@inproceedings{PCL,
title={Prototypical Contrastive Learning of Unsupervised Representations},
author={Junnan Li and Pan Zhou and Caiming Xiong and Steven C.H. Hoi},
booktitle={ICLR},
year={2021}
}

### Requirements:
* ImageNet dataset
* Python ≥ 3.6
* PyTorch ≥ 1.4
* faiss-gpu: pip install faiss-gpu
* pip install tqdm

### Unsupervised Training:
This implementation only supports multi-gpu, DistributedDataParallel training, which is faster and simpler; single-gpu or DataParallel training is not supported.

To perform unsupervised training of a ResNet-50 model on ImageNet using a 4-gpu or 8-gpu machine, run:

python main_pcl.py \ 

-a resnet50 \
--lr 0.03 \
--batch-size 256 \
--temperature 0.2 \
--mlp --aug-plus --cos (only activated for PCL v2) \
--dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
--exp-dir experiment_pcl
[Imagenet dataset folder]

### Download Pre-trained Models
PCL v1| PCL v2
------ | ------

### Linear SVM Evaluation on VOC
To train a linear SVM classifier on VOC dataset, using frozen representations from a pre-trained model, run:

python eval_svm_voc.py --pretrained [your pretrained model] \

-a resnet50 \
--low-shot (only for low-shot evaluation, otherwise the entire dataset is used) \
[VOC2007 dataset folder]

Linear SVM classification result on VOC, using ResNet-50 pretrained with PCL for 200 epochs:

Model| k=1 | k=2 | k=4 | k=8 | k=16| Full
--- | --- | --- | --- | --- | --- | ---
PCL v1| 46.9| 56.4| 62.8| 70.2| 74.3 | 82.3
PCL v2| 47.9| 59.6| 66.2| 74.5| 78.3 | 85.4

k is the number of training samples per class.

### Linear Classifier Evaluation on ImageNet
Requirement: pip install tensorboard_logger \
To train a logistic regression classifier on ImageNet, using frozen representations from a pre-trained model, run:

python eval_cls_imagenet.py --pretrained [your pretrained model] \

-a resnet50 \
--lr 5 \
--batch-size 256 \
--id ImageNet_linear \
--dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
[Imagenet dataset folder]

Linear classification result on ImageNet, using ResNet-50 pretrained with PCL for 200 epochs:
PCL v1 | PCL v2
------ | ------
61.5 | 67.6