Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/salim4n/fire_detection
Entrainement sur YOLOV8 pour qu'il puisse detecter du feu
https://github.com/salim4n/fire_detection
Last synced: 5 days ago
JSON representation
Entrainement sur YOLOV8 pour qu'il puisse detecter du feu
- Host: GitHub
- URL: https://github.com/salim4n/fire_detection
- Owner: salim4n
- Created: 2023-08-16T20:57:12.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-08-16T22:14:53.000Z (over 1 year ago)
- Last Synced: 2023-08-16T22:24:39.055Z (over 1 year ago)
- Language: Jupyter Notebook
- Size: 7.44 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Fire Detection using YOLOv8
[Fire Detection]
This repository contains an implementation of YOLOv8 trained to detect fire. The YOLO (You Only Look Once) algorithm is a real-time object detection system.
## Getting Started
1. **Clone the Repository**: Clone this repository to your local machine using `git clone https://github.com/salim4n/Fire_Detection.git`.
2. **Install Python**: Make sure you have Python installed on your computer.
3. **Run the Code**: Open a terminal/command prompt, navigate to the cloned repository, and run the command `python main.py` to start the fire detection application.
## Demo
Check out this demo video to see the fire detection in action:
[Watch the Demo Video](https://youtube.com/shorts/RobJMNTdx6E?feature=share)
## Usage
- The `main.py` script processes a video stream in real-time, detecting fire using the trained YOLOv8 model.
- Use the webcam or provide a video file as input for detection.
- Detected fires are highlighted in the video with bounding boxes.
- Feel free to experiment with different video sources and scenarios.## License
This project is licensed under the [MIT License](LICENSE).