Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/salmon-brain/dead-salmon-brain
Apache Spark based framework for analysis A/B experiments
https://github.com/salmon-brain/dead-salmon-brain
ab-testing abtesting analytics apache-spark experimentation experiments java python scala spark split-testing statistics
Last synced: 3 months ago
JSON representation
Apache Spark based framework for analysis A/B experiments
- Host: GitHub
- URL: https://github.com/salmon-brain/dead-salmon-brain
- Owner: Salmon-Brain
- License: apache-2.0
- Created: 2021-11-07T09:58:16.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-06-25T13:14:47.000Z (7 months ago)
- Last Synced: 2024-10-12T00:04:47.652Z (3 months ago)
- Topics: ab-testing, abtesting, analytics, apache-spark, experimentation, experiments, java, python, scala, spark, split-testing, statistics
- Language: Java
- Homepage:
- Size: 355 KB
- Stars: 11
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Dead salmon brain
The dead salmon brain is an open source project for industrial A/B statistical analysis and reporting. The core library extends Apache Spark functionality, making it easy to integrate into your data processing pipelines and providing scalable implementations
of common online experimentation techniques and mathematical methods.## API
Java/Scala/Python## Getting Started
### Build from source```bash
1) Clone git repository
2) Check spark,scala,hadoop and set correct in 3 step
3) bash setup.sh spark=3.1.2 scala=2.12.11 hadoop=3.2 is_build=true is_install_python_lib=false
```### Setup from released packages
```bash
1) Clone git repository
2) Check version,spark,scala,hadoop and set correct in 3 step
3) bash setup.sh version=0.0.4 spark=3.1.2 scala=2.12.11 hadoop=3.2 is_build=false is_install_python_lib=false
```### Add as library
[Maven Central](https://mvnrepository.com/artifact/ai.salmonbrain/)[PIP](https://pypi.org/project/dead-salmon-brain/)
### Data model
```scala
case class ExpData(
timestamp: Long, //metric timestamp
variantId: String, //(treatment and control)
entityUid: String, //unique entity id
experimentUid: String, //unique experiment id
metricValue: Double, //numeric metric value
metricName: String, //unique metric name in metricSource space
categoryName: String, //entity category name (i.e gender)
categoryValue: String, // entity category value (i.e male, female, other)
metricSource: String, //metric source
isAdditive: Boolean // is additive metric or not
)
```### Usage
```scala
import org.apache.commons.math3.distribution.NormalDistribution
import org.apache.spark.ml.Pipeline
import ai.salmonbrain.computing.{ExpData, CumulativeMetricTransformer, OutlierRemoveTransformer, AutoStatisticsTransformer}val control = new NormalDistribution(1, 1)
.sample(1000)
.zipWithIndex.map { case (value, idx) =>
ExpData(System.currentTimeMillis(), "control", idx.toString, "exp", value, "timeSpent")
}val treatment = new NormalDistribution(2, 4)
.sample(1000)
.zipWithIndex.map { case (value, idx) =>
ExpData(System.currentTimeMillis(), "treatment", idx.toString, "exp", value, "timeSpent")
}val model = new Pipeline().setStages(
Array(
new CumulativeMetricTransformer(), // aggregate all metrics
new OutlierRemoveTransformer() // remove outliers by percentile
.setLowerPercentile(0.01)
.setUpperPercentile(0.99),
new AutoStatisticsTransformer() // auto choose and compute Welch or MannWhitney test
.setAlpha(0.05)
.setBeta(0.2)
)
)val report = model.fit(data).transform(data)
report.select(
"metricName",
"experimentUid",
"statisticsData.srm",
"statisticsData.testType",
"statisticsData.statResult.pValue",
"statisticsData.statResult.requiredSampleSizeByVariant",
"statisticsData.statResult.percentageLeft",
"statisticsData.statResult.percentageRight"
).show
+----------+-------------+-----+--------+-------+---------------------------+-----------------+-----------------+
|metricName|experimentUid| srm|testType|pValue |requiredSampleSizeByVariant| percentageLeft| percentageRight|
+----------+-------------+-----+--------+-------+---------------------------+-----------------+-----------------+
| timeSpent| exp|false| WELCH|1.3e-21| 82| 94.6294| 148.8822|
+----------+-------------+-----+--------+-------+---------------------------+-----------------+-----------------+
```### What they are and how to interpret them?
[srm](https://towardsdatascience.com/the-essential-guide-to-sample-ratio-mismatch-for-your-a-b-tests-96a4db81d7a4)
if true than your test is invalid[pValue](https://en.wikipedia.org/wiki/P-value)
if less than 0.05 or 0.01 then great[requiredSampleSizeByVariant](https://en.wikipedia.org/wiki/Sample_size_determination)
estimated required sample size by each variant for observed test and data parameters[percentageLeft](https://en.wikipedia.org/wiki/Confidence_interval)
lower percent confidence interval[percentageRight](https://en.wikipedia.org/wiki/Confidence_interval)
upper percent confidence interval### Extra features
```scala
import ai.salmon.computing.RatioMetricDataval cum = new CumulativeMetricTransformer()
.setNumBuckets(256) // you can split your data by buckets and use buckets like new entity
.setNumeratorNames(Array("clicks")) // you can set numerator
.setDenominatorNames(Array("views")) // and denominator
.setRatioNames(Array("ctr")) // and create new ratio metric
```## Contributing
Pull requests are welcome.## License
[Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)