Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sam-sponcy/pollusound
The project involves serial communication with an SARA R410M module using AT commands to configure an LTE-M connection (4G). It resolves a domain name to an IP address, sends MQTT messages to report status and detections from BirdNET, and verifies connectivity to both the network and MQTT server.
https://github.com/sam-sponcy/pollusound
at birdnet-pi mqtt r410m sara
Last synced: about 1 month ago
JSON representation
The project involves serial communication with an SARA R410M module using AT commands to configure an LTE-M connection (4G). It resolves a domain name to an IP address, sends MQTT messages to report status and detections from BirdNET, and verifies connectivity to both the network and MQTT server.
- Host: GitHub
- URL: https://github.com/sam-sponcy/pollusound
- Owner: Sam-Sponcy
- Created: 2024-07-08T12:26:28.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-07-12T12:01:36.000Z (7 months ago)
- Last Synced: 2024-12-21T22:24:40.098Z (about 1 month ago)
- Topics: at, birdnet-pi, mqtt, r410m, sara
- Language: Python
- Homepage:
- Size: 50.6 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
FR - But du projet Pollusound
Le but est d'analyser les sons dans la ville de Bruxelles. Pour cela, nous utiliserons une carte LTE-M RAPID dev Kit Orange.- BirdNET-Analyzer
Nous utiliserons l'IA de BirdNet afin de proposer une solution simple et abordable d'une IA de type CNN qui utilise le traitement d'image pour reconnaître un son.
https://github.com/mcguirepr89/BirdNET-PiCette IA fonctionne sur un Raspberry Pi 4B. Celle-ci est fortement recommandée dans le dépôt (https://github.com/mcguirepr89/BirdNET-Pi).
Attention ! Il faut utiliser comme image dans le Raspberry le "Raspberry Pi OS Legacy 64 bits Bullseye" et non la version Bookworm.
- Carte Sodaq
Tutoriel ici : https://docs.allthingstalk.com/examples/hardware/get-started-sodaq-sara/
Nous utiliserons la carte "SODAQ SARA AFF REV 3" avec le code "nbIOT_serial_passthrough". Ce code assure la communication entre le Raspberry et le module SARA-R410M via une liaison série.
- main.py : Ce fichier permet de paramétrer le module SARA-R410M afin d'assurer la connexion au réseau cellulaire, au serveur MQTT et d'envoyer les détections de sons.
- service.txt : mise en place d'un service au demarrage
- birdnet_to_mqtt.py : Ce fichier permet de vérifier les logs du fichier '/var/log/syslog' afin de récupérer les données des oiseaux détectés par BirdNet. Ce code est une version modifiée de celui disponible sur (git: deepcoder / birdnet_to_mqtt.py). (https://gist.github.com/deepcoder/c309087c456fc733435b47d83f4113ff#file-birdnet_to_mqtt-py)
![IMG_9250](https://github.com/Sam-Sponcy/Pollusound/assets/93118296/6469fca2-1e9e-4780-93bb-df54abe5041c)
lien boite : https://www.thingiverse.com/thing:3338826Micro suggéré : https://github.com/mcguirepr89/BirdNET-Pi/discussions/39
EN - Goal of the Pollusound Project
The goal of the Pollusound project is to analyze sounds in the city of Brussels. For this, we will use an Orange LTE-M RAPID dev Kit.- BirdNET-Analyzer
We will use BirdNet AI to provide a simple and affordable solution of a CNN-type AI that uses image processing to recognize a sound.This AI runs on a Raspberry Pi 4B. This setup is highly recommended in the repository (https://github.com/mcguirepr89/BirdNET-Pi).
Attention! Use the "Raspberry Pi OS Legacy 64 bits Bullseye" as the image for the Raspberry, not the Bookworm version.
- Sodaq Board
Tutorial here: https://docs.allthingstalk.com/examples/hardware/get-started-sodaq-sara/
We will use the "SODAQ SARA AFF REV 3" board with the provided code "nbIOT_serial_passthrough". This code ensures communication between the Raspberry and the SARA-R410M module via serial connection.
- main.py: This file configures the SARA-R410M module to ensure connection to the cellular network, the MQTT server, and to send sound detections.
- birdnet_to_mqtt.py: This file checks the logs in '/var/log/syslog' to retrieve the data of birds detected by BirdNet. This code is a modified version of the one available at (git: deepcoder / birdnet_to_mqtt.py). (https://gist.github.com/deepcoder/c309087c456fc733435b47d83f4113ff#file-birdnet_to_mqtt-py)