Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sambo-optimization/sambo

πŸŽ―πŸ“ˆ Sequantial and model-based optimization
https://github.com/sambo-optimization/sambo

bayesian-optimization bayesopt blackbox-optimization global-optimization global-optimization-algorithms hyperparameter-optimization hyperparameter-tuning machine-learning partial-dependence-plot partial-dependence-plots sce-ua scientific-computing scikit-learn scikit-optimize scipy-optimize surrogate-based-optimization

Last synced: 21 days ago
JSON representation

πŸŽ―πŸ“ˆ Sequantial and model-based optimization

Awesome Lists containing this project

README

        

[![SAMBO - Sequential And Model-Based Optimization](logo.svg)](https://sambo-optimization.github.io/)
=====
[![Build Status](https://img.shields.io/github/actions/workflow/status/sambo-optimization/sambo/ci.yml?branch=master&style=for-the-badge)](https://github.com/sambo-optimization/sambo/actions)
[![sambo on PyPI](https://img.shields.io/pypi/v/sambo.svg?color=blue&style=for-the-badge)](https://pypi.org/project/sambo)
[![package downloads](https://img.shields.io/pypi/dm/sambo.svg?color=skyblue&style=for-the-badge)](https://pypi.org/project/sambo)
[![GitHub Sponsors](https://img.shields.io/github/sponsors/kernc?color=pink&style=for-the-badge)](https://github.com/sponsors/kernc)

SAMBO: Sequential And Model-Based (Bayesian) Optimization of black-box objective functions.

[**Project website**](https://sambo-optimization.github.io)

[Documentation]

[Documentation]: https://sambo-optimization.github.io/doc/sambo/

Installation
------------
```shell
$ pip install sambo
# or
$ pip install 'sambo[all]' # Pulls in Matplotlib, scikit-learn
```

Usage
-----
See [examples on project website](https://sambo-optimization.github.io/#examples).

Features
--------
* Python 3+
* Simple usage, standard API.
* Algorithms prioritize to minimize number of evaluations of the objective function: SHGO, SCE-UA and SMBO available.
* Minimal dependencies: NumPy, SciPy (scikit-learn & Matplotlib optional).
* State-of-the-art performanceβ€”see [benchmark results](https://sambo-optimization.github.io/#benchmark)
against other common optimizer implementations.
* Integral, real (floating), and categorical dimensions.
* Fast approximate global black-box optimization.
* [Beautiful Matplotlib charts](https://sambo-optimization.github.io/#examples).

Development
-----------
Check [CONTRIBUTING.md](CONTRIBUTING.md) for hacking details.