Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/same-ou/arabic-text-summarization
Arabic Text Summarization App: A Streamlit app that uses fine-tuned Transformer models to summarize Arabic text.
https://github.com/same-ou/arabic-text-summarization
nlp streamlit transformers
Last synced: 5 days ago
JSON representation
Arabic Text Summarization App: A Streamlit app that uses fine-tuned Transformer models to summarize Arabic text.
- Host: GitHub
- URL: https://github.com/same-ou/arabic-text-summarization
- Owner: same-ou
- Created: 2024-06-01T09:07:33.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-06-11T10:43:28.000Z (7 months ago)
- Last Synced: 2024-06-11T12:03:35.507Z (7 months ago)
- Topics: nlp, streamlit, transformers
- Language: Python
- Homepage:
- Size: 90.8 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# arabic-text-summarization
This Streamlit application utilizes a fine-tuned version of a set of summarization models specifically designed for Arabic text. The models are fine-tuned on the [XL-Sum dataset](https://huggingface.co/datasets/csebuetnlp/xlsum). Users can either input text directly or upload a PDF for summarization.
## Screenshots
![Application](screenshots/app.png)## Getting Started
### Local Setup
1. Clone the Repository: Begin by cloning this repository to your local machine.
```bash
git clone [email protected]:same-ou/arabic-text-summarization.git
```
2. Install Dependencies: Navigate to the project directory and install the required dependencies.
```bash
cd arabic-text-summarization
pip install -r requirements.txt
```
3. Run the application:
```bash
streamlit run app.py
```
After starting the app, navigate to http://localhost:8501 in your web browser to use the application.### Docker Setup
1. Build the Docker Image
```bash
docker build -t streamlit-app .
```
2. Run the Docker Container
```bash
docker run -p 8501:8501 streamlit-app
```
Access the application by navigating to http://localhost:8501 in your web browser.## Connect With Me
Have feedback, suggestions, or questions about the Whisper speech recognition deployment? Feel free to connect with me:Email: [[email protected]](mailto:[email protected]) | Linkedin: [OUSSAMA EL HADRAMI](https://www.linkedin.com/in/elhadrami-oussama/)
Happy coding! 🚀✨
[slides](https://docs.google.com/presentation/d/18zmaqAn3_0ygYXY1gytLW0PxJB4MG7dxebzekoC6QHM/edit#slide=id.p) | [app](https://arabicsumm.streamlit.app/)