Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/samlau95/cogs108disc-fa19
Sam's discussion materials for COGS 108 Fa19
https://github.com/samlau95/cogs108disc-fa19
Last synced: about 1 month ago
JSON representation
Sam's discussion materials for COGS 108 Fa19
- Host: GitHub
- URL: https://github.com/samlau95/cogs108disc-fa19
- Owner: SamLau95
- Created: 2019-10-02T05:15:04.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-12-04T17:03:55.000Z (about 5 years ago)
- Last Synced: 2024-11-05T08:03:05.463Z (3 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 68.8 MB
- Stars: 0
- Watchers: 2
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Sam's COGS 108 Fa19 Discussion Materials
This repo contains the slides, notebooks, and data used in Sam's discussions
for COGS 108 Fa19. Access content via the file browser above, or via the UCSD
datahub links in the table below (requires UCSD email).| Disc | Description | Slides | Demo | Extras |
| ---- | ------------------------------------------ | ---------- | --------------- | -------------------------------------------------------------------------- |
| 01 | Introductions, Oakland License Plates Demo | [PDF][s01] | [DataHub][d01] | [Jupyter, Python Practice][e01] |
| 02 | GitHub, Python Basics | [PDF][s02] | (No Demo Today) | [Data Types, NumPy, pandas Practice][e02a], [Vi Hart on Data Ethics][e02b] |
| 03 | Project Proposal Feedback | [PDF][s03] | [DataHub][d03] | [Chapter 1 of Principles and Techniques of Data Science][e03] |
| 04 | pandas primer, A2 | [PDF][s04] | (No Demo Today) | [Chapter 3 of PTDS][e04a], [10 mins to pandas][e04b] |
| 05 | State, slicing, A2 tips | [PDF][s05] | [DataHub][d05] | [Sam's pandas lecture slides][e05a], [Sam's pandas lecture video][e05b] |
| 06 | A2 FAQ, Plotting, Text | [PDF][s06] | [DataHub][d06] | [Chapter 3 of PTDS][e06a], [VADER for Python][e06b] |
| 07 | Personal webpages with Jupyter, A3 | [PDF][s07] | [DataHub][d07] | [Section 3.3 of PTDS][e07a] |
| 08 | seaborn, A4 | [PDF][s08] | [DataHub][d08] | [Section 6.1, 6.2 of PTDS][e08a] |
| 09 | No class (Thanksgiving) | [PDF][s08] | [DataHub][d08] | [Section 6.1, 6.2 of PTDS][e08a] |
| 10 | CAPEs, Life Advice, A5 | [PDF][s10] | | |[s01]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc01/disc01.pdf
[d01]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/cogs108disc-fa19&subPath=disc01/disc01.ipynb
[e01]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/python-bootcamp-2019&subPath=lab01/
[s02]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc02/disc02.pdf
[e02a]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/python-bootcamp-2019&subPath=lab02/
[e02b]: https://theartofresearch.org/ai-ubi-and-data/
[s03]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc03/disc03.pdf
[d03]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/cogs108disc-fa19&subPath=disc03/disc03.ipynb
[e03]: https://www.textbook.ds100.org/ch/01/lifecycle_intro.html
[s04]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc04/disc04.pdf
[e04a]: https://www.textbook.ds100.org/ch/03/pandas_intro.html
[e04b]: https://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html
[s05]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc05/disc05.pdf
[d05]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/cogs108disc-fa19&subPath=disc05/disc05.ipynb
[e05a]: http://bit.ly/sam-pandas-01
[e05b]: https://www.youtube.com/watch?v=7ns-k29aMgE&feature=youtu.be
[s06]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc06/disc06.pdf
[d06]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/cogs108disc-fa19&subPath=disc06/disc06.ipynb
[e06a]: https://www.textbook.ds100.org/ch/06/viz_intro.html
[e06b]: https://github.com/cjhutto/vaderSentiment
[s07]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc07/disc07.pdf
[d07]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/cogs108disc-fa19&subPath=disc07/disc07.ipynb
[e07a]: https://www.textbook.ds100.org/ch/03/pandas_grouping_pivoting.html
[s08]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc08/disc08.pdf
[d08]: http://datahub.ucsd.edu/hub/user-redirect/git-sync?repo=https://github.com/SamLau95/cogs108disc-fa19&subPath=disc08/disc08.ipynb
[e08a]: https://www.textbook.ds100.org/ch/06/viz_quantitative.html
[s10]: https://github.com/SamLau95/cogs108disc-fa19/blob/master/disc10/disc10.pdfHere are some link that might have useful career advice or give you inspiration
for final projects:- [Salary Negotiation][a05]
- [Data Underload][a04]
- [Uber tipping patterns][a03]
- [AirBnB Math][a02]
- [Optimal Selection of Police Beats][a01]
- [Don't Call Yourself a Programmer][a00][a05]: https://www.kalzumeus.com/2012/01/23/salary-negotiation/
[a04]: https://flowingdata.com/category/projects/data-underload/
[a03]: https://www.washingtonpost.com/business/2019/10/22/young-women-get-most-tips-regular-riders-tip-less-lessons-million-uber-trips
[a02]: https://twitter.com/rothosphere/status/1185299145504018432
[a01]: https://pdfs.semanticscholar.org/d4a1/2e6df361ba43d72a9b0a594f1f5a17ad340f.pdf%20It
[a00]: https://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/During the first discussion we shared our favorite restaurants in San Diego.
Here's what I wrote down. If I missed anything come mention it to me
before/after discussion. Places that were mentioned multiple times are bolded.- **Cafe Coyote**
- **Menya Ultra Ramen**
- **Oscar's Seafood**
- **Raki Raki Ramen**
- **The Taco Stand**
- Barbusa
- Board and Brew
- Dirty Birds
- Fat Fish
- Hinata
- In N Out
- Kyukaku
- Omelet Cottage
- Poke One N Half
- Pot Pie Company
- Puerto La Boca
- Raised by Wolves (for drinks)
- Regents Pizzeria
- Short House (?)
- Sizzling Pot King
- Snooze AM Eatery
- Tacos El Gordo
- The Melt
- Tofu House
- Vallarta Mexican Express