Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sammous/spacy-lefff
Custom French POS and lemmatizer based on Lefff for spacy
https://github.com/sammous/spacy-lefff
dataesr eig-2018 entrepreneur-interet-general french french-pos lemmatizer nlp pos-tagging python spacy spacy-extensions
Last synced: 27 days ago
JSON representation
Custom French POS and lemmatizer based on Lefff for spacy
- Host: GitHub
- URL: https://github.com/sammous/spacy-lefff
- Owner: sammous
- License: mit
- Created: 2018-03-16T13:12:55.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2023-02-26T16:50:21.000Z (over 1 year ago)
- Last Synced: 2024-10-01T05:41:27.026Z (about 1 month ago)
- Topics: dataesr, eig-2018, entrepreneur-interet-general, french, french-pos, lemmatizer, nlp, pos-tagging, python, spacy, spacy-extensions
- Language: Python
- Homepage:
- Size: 2.85 MB
- Stars: 63
- Watchers: 4
- Forks: 12
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-polyglot - Spacy-lefff - PoS tagging and Lemmatizaion for French text via spaCy (Python Packages)
README
[![Build Status](https://github.com/sammous/spacy-lefff/actions/workflows/test.yml/badge.svg?branch=master)](https://github.com/sammous/spacy-lefff/actions/workflows/test.yml?branch=master)[![Coverage Status](https://codecov.io/gh/sammous/spacy-lefff/badge.svg?branch=master)](https://codecov.io/gh/sammous/spacy-lefff?branch=master)[![PyPI version](https://badge.fury.io/py/spacy-lefff.svg)](https://badge.fury.io/py/spacy-lefff)
# spacy-lefff : Custom French POS and lemmatizer based on Lefff for spacy
[spacy v2.0](https://spacy.io/usage/v2) extension and pipeline component for adding a French POS and lemmatizer based on [Lefff](https://hal.inria.fr/inria-00521242/).
_On version [v2.0.17](https://github.com/explosion/spaCy/releases/tag/v2.0.17), spaCy updated French lemmatization_
_As of version *0.4.0* and above, `spacy-lefff` only supports python3.6+ and spacy v3_
_As of version *0.5.0* and above, `spacy-lefff` only supports python3.8+ and spacy v3_
## Description
This package allows to bring Lefff lemmatization and part-of-speech tagging to a spaCy custom pipeline.
When POS tagging and Lemmatizaion are combined inside a pipeline, it improves your text preprocessing for French compared to the built-in spaCy French processing.
It is still a WIP (work in progress), so the matching might not be perfect but if nothing was found by the package, it is still possible to use the default results of `spaCy`.## Installation
`spacy-lefff` requires `spacy` >= v3.0.0.
```
pip install spacy-lefff
```## Usage
Import and initialize your `nlp` spacy object and add the custom component after it parsed the document so you can benefit the POS tags.
Be aware to work with `UTF-8`.If both POS and lemmatizer are bundled, you need to tell the lemmatizer to use MElt mapping by setting `after_melt`, else it will use the spaCy part of speech mapping.
`default` option allows to return the word by default if no lemma was found.
Current mapping used spaCy to Lefff is :
```json
{
"ADJ": "adj",
"ADP": "det",
"ADV": "adv",
"DET": "det",
"PRON": "cln",
"PROPN": "np",
"NOUN": "nc",
"VERB": "v",
"PUNCT": "poncts"
}
```## MElt Tagset
MElt Tag table:
```
ADJ adjective
ADJWH interrogative adjective
ADV adverb
ADVWH interrogative adverb
CC coordination conjunction
CLO object clitic pronoun
CLR reflexive clitic pronoun
CLS subject clitic pronoun
CS subordination conjunction
DET determiner
DETWH interrogative determiner
ET foreign word
I interjection
NC common noun
NPP proper noun
P preposition
P+D preposition+determiner amalgam
P+PRO prepositon+pronoun amalgam
PONCT punctuation mark
PREF prefix
PRO full pronoun
PROREL relative pronoun
PROWH interrogative pronoun
V indicative or conditional verb form
VIMP imperative verb form
VINF infinitive verb form
VPP past participle
VPR present participle
VS subjunctive verb form
```### Code snippet
You need to install the French spaCy package before : `python -m spacy download fr`.
- An example using the `LefffLemmatizer` without the `POSTagger`:
```python
import spacy
from spacy_lefff import LefffLemmatizer
from spacy.language import Language@Language.factory('french_lemmatizer')
def create_french_lemmatizer(nlp, name):
return LefffLemmatizer()nlp = spacy.load('fr_core_news_sm')
nlp.add_pipe('french_lemmatizer', name='lefff')
doc = nlp(u"Apple cherche a acheter une startup anglaise pour 1 milliard de dollard")
for d in doc:
print(d.text, d.pos_, d._.lefff_lemma, d.tag_, d.lemma_)
```| Text | spaCy POS | Lefff Lemma | spaCy tag | spaCy Lemma |
| -------- | --------- | ----------- | ------------------------------------------------------------ | ----------- |
| Apple | ADJ | None | ADJ\_\_Number=Sing | Apple |
| cherche | NOUN | cherche | NOUN\_\_Number=Sing | chercher |
| a | AUX | None | AUX\_\_Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin | avoir |
| acheter | VERB | acheter | VERB\_\_VerbForm=Inf | acheter |
| une | DET | un | DET\_\_Definite=Ind Gender=Fem Number=Sing PronType=Art | un |
| startup | ADJ | None | ADJ\_\_Number=Sing | startup |
| anglaise | NOUN | anglaise | NOUN\_\_Gender=Fem Number=Sing | anglais |
| pour | ADP | None | ADP\_\_\_ | pour |
| 1 | NUM | None | NUM\_\_NumType=Card | 1 |
| milliard | NOUN | milliard | NOUN\_\_Gender=Masc Number=Sing NumType=Card | milliard |
| de | ADP | un | ADP\_\_\_ | de |
| dollard | NOUN | None | NOUN\_\_Gender=Masc Number=Sing | dollard |- An example using the `POSTagger` :
```python
import spacy
from spacy_lefff import LefffLemmatizer, POSTagger
from spacy.language import Language@Language.factory('french_lemmatizer')
def create_french_lemmatizer(nlp, name):
return LefffLemmatizer(after_melt=True, default=True)@Language.factory('melt_tagger')
def create_melt_tagger(nlp, name):
return POSTagger()
nlp = spacy.load('fr_core_news_sm')
nlp.add_pipe('melt_tagger', after='parser')
nlp.add_pipe('french_lemmatizer', after='melt_tagger')
doc = nlp(u"Apple cherche a acheter une startup anglaise pour 1 milliard de dollard")
for d in doc:
print(d.text, d.pos_, d._.melt_tagger, d._.lefff_lemma, d.tag_, d.lemma_)
```| Text | spaCy POS | MElt Tag | Lefff Lemma | spaCy tag | spaCy Lemma |
| -------- | --------- | -------- | ----------- | ------------------------------------------------------------ | ----------- |
| Apple | ADJ | NPP | apple | ADJ\_\_Number=Sing | Apple |
| cherche | NOUN | V | chercher | NOUN\_\_Number=Sing | chercher |
| a | AUX | V | avoir | AUX\_\_Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin | avoir |
| acheter | VERB | VINF | acheter | VERB\_\_VerbForm=Inf | acheter |
| une | DET | DET | un | DET\_\_Definite=Ind Gender=Fem Number=Sing PronType=Art | un |
| startup | ADJ | NC | startup | ADJ\_\_Number=Sing | startup |
| anglaise | NOUN | ADJ | anglais | NOUN\_\_Gender=Fem Number=Sing | anglais |
| pour | ADP | P | pour | ADP\_\_\_ | pour |
| 1 | NUM | DET | 1 | NUM\_\_NumType=Card | 1 |
| milliard | NOUN | NC | milliard | NOUN\_\_Gender=Masc Number=Sing NumType=Card | milliard |
| de | ADP | P | de | ADP\_\_\_ | de |
| dollard | NOUN | NC | dollard | NOUN\_\_Gender=Masc Number=Sing | dollard |We can see that both `cherche` and `startup` where not tagged correctly by the default pos tagger.
`spaCy`classified them as a `NOUN` and `ADJ` while `MElT` classified them as a `V` and an `NC`.## Credits
Sagot, B. (2010). [The Lefff, a freely available and large-coverage morphological and syntactic lexicon for French](https://hal.inria.fr/inria-00521242/). In 7th international conference on Language Resources and Evaluation (LREC 2010).
Benoît Sagot Webpage about LEFFF
http://alpage.inria.fr/~sagot/lefff-en.htmlFirst work of [Claude Coulombe](https://github.com/ClaudeCoulombe) to support Lefff with Python : https://github.com/ClaudeCoulombe