Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sanjurajveer/housing-price-prediction


https://github.com/sanjurajveer/housing-price-prediction

Last synced: 22 days ago
JSON representation

Awesome Lists containing this project

README

        

Here’s a simple **README.md** template for easy copy-pasting:

---

# 🏠 Housing Price Prediction Using XGBoost

This project predicts housing prices using the **XGBoost Regressor**, achieving excellent accuracy. It includes data preprocessing, feature engineering, model training, and evaluation.

## πŸ“Š Model Performance
- **Mean Absolute Error (MAE):** 0.2241
- **Root Mean Squared Error (RMSE):** 0.3071
- **RΒ² Score:** 0.8806

## πŸš€ How to Run the Project

### Prerequisites
1. Install Python (>=3.8).
2. Install dependencies:
```bash
pip install -r requirements.txt
```

### Steps to Run
1. Clone the repository:
```bash
git clone https://github.com/your-username/housing-price-prediction.git
cd housing-price-prediction
```
2. Add the dataset to the `data/` folder (e.g., from [Kaggle](https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data)).
3. Run the Jupyter notebook or training script:
```bash
jupyter notebook notebooks/housing_price_prediction.ipynb
```
OR
```bash
python src/train_model.py
```

4. Generate predictions:
```bash
python src/predict.py
```

## πŸ› οΈ Features
- Data preprocessing (handling missing values, scaling, encoding).
- Feature engineering and skewness handling.
- XGBoost model with hyperparameter tuning.
- Evaluation metrics: MAE, RMSE, and RΒ² Score.

## πŸ€– Technologies Used
- Python
- XGBoost
- Pandas, NumPy, Scikit-learn
- Matplotlib, Seaborn

## πŸ“ˆ Future Improvements
- Experiment with other algorithms (e.g., LightGBM, CatBoost).
- Further hyperparameter tuning for better accuracy.
- Deploy the model for real-time predictions.

---

Feel free to adjust this for your project!