Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sanjurajveer/stock_price_prediction
App to predict 10 days price of stocks
https://github.com/sanjurajveer/stock_price_prediction
keras lstm pandas python scikit-learn streamlit-webapp tensorflow yfinance
Last synced: 5 days ago
JSON representation
App to predict 10 days price of stocks
- Host: GitHub
- URL: https://github.com/sanjurajveer/stock_price_prediction
- Owner: sanjurajveer
- Created: 2025-02-01T08:23:58.000Z (5 days ago)
- Default Branch: main
- Last Pushed: 2025-02-01T08:40:35.000Z (5 days ago)
- Last Synced: 2025-02-01T09:27:23.368Z (5 days ago)
- Topics: keras, lstm, pandas, python, scikit-learn, streamlit-webapp, tensorflow, yfinance
- Language: Python
- Homepage:
- Size: 0 Bytes
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
### **README: Stock Price Prediction App**
#### **Project Overview**
This project is a **Stock Price Prediction App** deployed on **Streamlit**, using **LSTM (Long Short-Term Memory) Neural Networks** for time-series forecasting. The app fetches real-time stock data, applies technical indicators, and predicts future stock prices for the next 10 days.🔗 **Live App:** [Stock Price Predictor](https://stocks-price-predict.streamlit.app)
---
### **Features**
✅ **Fetches real-time stock data** using Yahoo Finance (`yfinance`).
✅ **Applies technical indicators** such as Moving Averages, RSI, Bollinger Bands, and Volatility.
✅ **Uses LSTM Neural Networks** to predict stock prices based on historical data.
✅ **Interactive Streamlit UI** for selecting stocks and visualizing predictions.
✅ **Plots future stock prices** with an interactive Plotly chart.---
### **Technologies Used**
- **Python** (Core Language)
- **yfinance** (Stock Data API)
- **Pandas & NumPy** (Data Processing)
- **Matplotlib & Seaborn** (Data Visualization)
- **Plotly** (Interactive Graphs)
- **Keras & TensorFlow** (LSTM Model for Predictions)
- **Scikit-learn** (Data Normalization & Train-Test Splitting)
- **Streamlit** (Web App Deployment)---
### **Installation & Setup**
1. **Clone the Repository**
```bash
git clone https://github.com/yourusername/stocks-price-predict.git
cd stocks-price-predict
```2. **Create a Virtual Environment** (Recommended)
```bash
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
```3. **Install Dependencies**
```bash
pip install -r requirements.txt
```4. **Run the Streamlit App**
```bash
streamlit run stocks_prediction.py
```---
### **How It Works**
1. **Select a stock** (AAPL, MSFT, GOOGL, TSLA, AMZN) from the dropdown.
2. The app **fetches the last 5 years of stock data** from Yahoo Finance.
3. It **trains an LSTM model** to analyze past trends and forecast the next 10 days.
4. The predicted prices are displayed in **a table and an interactive chart**.---
### **Example Prediction Output**
| Date | Predicted Price ($) |
|------------|--------------------|
| 2025-02-01 | 182.45 |
| 2025-02-02 | 184.32 |
| 2025-02-03 | 186.12 |
| ... | ... |---
### **Future Enhancements**
🚀 Improve model accuracy with **hyperparameter tuning**.
📈 Integrate **more advanced financial indicators**.
🌎 Expand stock selections to **global markets**.
📊 Add real-time **news sentiment analysis** for better predictions.---
### **Contributors**
👤 **Sanju Raj** – *[Your LinkedIn/GitHub Profile]*---
### **License**
This project is licensed under **MIT License**.---