https://github.com/sardhendu/data-science-projects
{PySpark, R, Python}: Several Data Science projects
https://github.com/sardhendu/data-science-projects
autoencoder bayesian-methods boosting-algorithms classification credit-card-fraud deep-neural-networks linear-regression logistic-regression machine-learning-algorithms pyspark python-3 random-forest regression svm-classifier tensorflow
Last synced: 19 days ago
JSON representation
{PySpark, R, Python}: Several Data Science projects
- Host: GitHub
- URL: https://github.com/sardhendu/data-science-projects
- Owner: Sardhendu
- Created: 2017-03-12T04:03:58.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2018-05-14T03:37:20.000Z (almost 7 years ago)
- Last Synced: 2025-04-12T23:44:32.806Z (19 days ago)
- Topics: autoencoder, bayesian-methods, boosting-algorithms, classification, credit-card-fraud, deep-neural-networks, linear-regression, logistic-regression, machine-learning-algorithms, pyspark, python-3, random-forest, regression, svm-classifier, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 103 MB
- Stars: 15
- Watchers: 3
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Data-Science-Projects:
## Techniques:
**Feature Selection**:* PCA (Principal Component Analysis)
* AIC (Akiake Information criterion)
* BIC (Bayesian Information criterion)
* LASSO (Least Absolute Shrinkage and Selection Operator)1. [Credit Card Fraud Detection](https://github.com/Sardhendu/Data-Science-Projects/tree/master/CreditCardFraudDetection): {Python: Sckit-learn, Tensorflow, R} (Ongoing
* Models:
1. Random Forest
2. Gradient Boosting
3. XGBoost
4. Deep Neural Nets
5. Autoencoders
6. Bayesian Methods2. [Diabetic-Readmission Analysis](https://github.com/Sardhendu/Data-Science-Projects/blob/master/Diabetic-Readmission/DiabeticReadmission-Spark.ipynb): {PySpark, R}
* Classification:
1. GLM {RIDGE/LASSO/ELNET}
2. Random Forests3. [Crime Prediction](https://github.com/Sardhendu/Data-Science-Projects/blob/master/Crime-Prediction/crimePrediction.ipynb): {Python: Sckit-learn}
* Regression:
1. Linear Regression
2. Polynomial Regression* Classification:
1. Decision Trees
2. Gaussian Naive Bayes
3. Support Vector Machines, Linear SVC, POLY, RBF
4. Random Forests4. [Credit default](https://github.com/Sardhendu/Data-Science-Projects/blob/master/Credit-Defaulters/CreditDefault.ipynb): {R}:
* Classification:
1. Logistic Regression (GLM): RIDGE/LASSO
2. Naive Bayes
3. Decision Trees
4. Random Forests
5. [Loan Default](https://github.com/Sardhendu/Data-Science-Projects/tree/master/Loan-Defaults): {R}
* Classification:
1. GLM (Generalized Linear Model)--> Data {source URL} :
1. http://archive.ics.uci.edu/ml/
2. https://www.lendingclub.com/info/download-data.action