Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sarincr/machine-learning-python-bootcamp
Basic exercises on Machine Learning with Python , Reference Book : Python for Probability, Statistics, and Machine Learning by José Unpingco
https://github.com/sarincr/machine-learning-python-bootcamp
algorithms artificial-intelligence deep-learning logistic-regression machine-learning machine-learning-algorithms machinelearning machinelearning-python matplotlib neural-network numpy pandas python python3 regression scikit-learn scipy sklearn statistics support-vector-machine
Last synced: 2 months ago
JSON representation
Basic exercises on Machine Learning with Python , Reference Book : Python for Probability, Statistics, and Machine Learning by José Unpingco
- Host: GitHub
- URL: https://github.com/sarincr/machine-learning-python-bootcamp
- Owner: sarincr
- Created: 2019-07-13T07:22:34.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-03-27T07:11:18.000Z (almost 3 years ago)
- Last Synced: 2023-10-19T18:27:11.880Z (over 1 year ago)
- Topics: algorithms, artificial-intelligence, deep-learning, logistic-regression, machine-learning, machine-learning-algorithms, machinelearning, machinelearning-python, matplotlib, neural-network, numpy, pandas, python, python3, regression, scikit-learn, scipy, sklearn, statistics, support-vector-machine
- Language: Jupyter Notebook
- Homepage:
- Size: 20.5 MB
- Stars: 7
- Watchers: 3
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Basic-exercises-on-Machine-Learning-with-Python
Basic exercises on Machine Learning with Python![alt text](https://github.com/sarincr/Machine-Learning-Python-Bootcamp/blob/master/IBM%20Badges.png)
01.Python Basics \
02.Arrays\
03.Numpy\
04.Lists\
05.InOut\
06.Tuple\
07.Sets\
08.Dictionary\
09.Directory\
10.Exceptions\
11.Custom Exceptions\
12.Class\
13.Inheritance\
14.Modules\
15.Math and Stats\
16.Matplotlib\
17.Seaborn\
18.SimPy\
19.Pendulum\
20.Arow module\
21.Decision TreesVIz\
22.Requests\
23.Tensorflow Basics\
24.Stumpy\
25.Linear_Regression\
26.Logistic_regression\
27.XGBRegressor\
28.Ridge_Regression\
29.Support_Vector_Regression\
30.Lasso_Regression\
31.Bayesian_Ridge_Regression\
32.MLPRegressor\
33.Random_Forest_Regression\
34.PLSRegression\
35.DecisionTreeRegressor\
36.Agglomerative_Clustering\
37.ARIMA\
38.K_Nearest_Neighbors_Regression\
39.SVC_linear\
40.SVC_RBF\
41.SVC_Poly\
42.MLPClassifier\
43.KNeighborsClassifier\
44.GaussianProcessClassifier\
45.DecisionTreeClassifier\
46.RandomForestClassifier\
47.AdaBoostClassifier\
48.GaussianNB\
49.K_Means_Clustering\