https://github.com/sash-a/hrlmujocoenvs.jl
HRL envs from Data efficient hierarchical reinforcement learning in Julia using Lyceum MuJoCo
https://github.com/sash-a/hrlmujocoenvs.jl
hierarchical-reinforcement-learning julialang reinforcement-learning-environments
Last synced: 4 months ago
JSON representation
HRL envs from Data efficient hierarchical reinforcement learning in Julia using Lyceum MuJoCo
- Host: GitHub
- URL: https://github.com/sash-a/hrlmujocoenvs.jl
- Owner: sash-a
- Created: 2021-09-01T14:05:51.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2022-01-31T07:44:31.000Z (over 3 years ago)
- Last Synced: 2025-01-18T03:25:13.992Z (5 months ago)
- Topics: hierarchical-reinforcement-learning, julialang, reinforcement-learning-environments
- Language: Julia
- Homepage:
- Size: 1.81 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# HrlMuJoCoEnvs.jl
HRL envs from [Data efficient hierarchical reinforcement learning](https://arxiv.org/abs/1805.08296) in Julia using [Lyceum MuJoCo](https://github.com/Lyceum/LyceumMuJoCo.jl)
## Available environments
* Ant gather
* Point gather
* Ant maze
* Point maze
* Ant push
* Ant fall## Installation
Make sure you check the install instructions for [Lyceum MuJoCo](https://github.com/Lyceum/LyceumMuJoCo.jl)
```
pkg> add https://github.com/sash-a/HrlMuJoCoEnvs.jl/
```## Example usage
```
using HrlMuJoCoEnvs
using LyceumMuJoCoenv = HrlMuJoCoEnvs.AntGatherEnv()
for i in 1:100
step!(env)
o = getobs(env)
setaction!(env, rand(8))
@show getreward(env)
if isdone(env)
println("done")
end
end```
## Examples of the environments
### Ant Gather
### Ant Maze
### Ant Push
### Ant Fall
ps. appologies for some poor coding practise, this is research code.