Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sauravsaini98/ruby-gemini-ai

A Ruby Gem created to communicate with Gemini via Vertex AI, Generative Language API, or AI Studio, Google's generative AI services. It works with Ruby versions 2.6.0 and higher.
https://github.com/sauravsaini98/ruby-gemini-ai

ai gemini gemini-api gemini-pro-api gemini-pro-vision generative-language-api generative-model google-ai google-ai-studio google-gemini google-gemini-ai google-gemini-pro google-vertex-ai ruby-gemini ruby-on-rails vertex-ai

Last synced: about 1 month ago
JSON representation

A Ruby Gem created to communicate with Gemini via Vertex AI, Generative Language API, or AI Studio, Google's generative AI services. It works with Ruby versions 2.6.0 and higher.

Awesome Lists containing this project

README

        

# Ruby GeminiAi

This guide explains how to seamlessly integrate the powerful Gemini AI API into your Ruby projects. Utilize Gemini's cutting-edge language capabilities for generating text, translating languages, and more.

# Table of Contents

- [Installation](#installation)
- [Bundler](#bundler)
- [Gem Install](#gem-install)
- [Credentials](#credentials)
- [Option 1: API Key (Generative Language API)](#option-1-api-key-generative-language-api)
- [Option 2: Service Account Credentials File (Vertex AI API)](#option-2-service-account-credentials-file-vertex-ai-api)
- [Option 3: Application Default Credentials (Vertex AI API)](#option-3-application-default-credentials-vertex-ai-api)
- [Usage](#usage)
- [Quickstart](#quickstart)
- [With Config](#with-config)
- [Verbose Logging](#verbose-logging)
- [Methods](#methods)
- [stream_generate_content](#stream_generate_content)
- [generate_content](#generate_content)
- [Development](#development)
- [Compatibility](#compatibility)
- [License](#license)
- [Resources and References](#resources-and-references)
- [Additional Notes](#additional-notes)

## Installation

### Bundler

Add this line to your application's Gemfile:

```ruby
gem "ruby-gemini-ai"
```

And then execute:

```bash
$ bundle install
```

### Gem install

Or install with:

```bash
$ gem install ruby-gemini-ai
```

and require with:

```ruby
require "gemini-ai"
```

## Credentials

- [Option 1: API Key (Generative Language API)](#option-1-api-key-generative-language-api)
- [Option 2: Service Account Credentials File (Vertex AI API)](#option-2-service-account-credentials-file-vertex-ai-api)
- [Option 3: Application Default Credentials (Vertex AI API)](#option-3-application-default-credentials-vertex-ai-api)

#### Option 1: API Key (Generative Language API):

Obtain an API Key from your Google Cloud project: [Google Cloud](https://console.cloud.google.com) through the Google Cloud Console: [https://console.cloud.google.com/apis/credentials](https://console.cloud.google.com/apis/credentials).

Enable the Generative Language API service in your Google Cloud Console. which can be done [here](https://console.cloud.google.com/apis/library/generativelanguage.googleapis.com).

Alternatively, you can generate an API Key through Google AI Studio [here](https://makersuite.google.com/app/apikey), which will automatically create a project for you.

#### Option 2: Service Account Credentials File (Vertex AI API)

For the Vertex AI API, create a [Google Cloud](https://console.cloud.google.com) Project and a [_Service Account_](https://cloud.google.com/iam/docs/service-account-overview). Enable the [Vertex AI] (https://cloud.google.com/vertex-ai) API for your project [here](https://console.cloud.google.com/apis/library/aiplatform.googleapis.com).

Generate credentials for your Service Account [here](https://console.cloud.google.com/apis/credentials) and download a JSON file named google-credentials.json.

```json
{
"type": "service_account",
"project_id": "YOUR_PROJECT_ID",
"private_key_id": "a00...",
"private_key": "-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----\n",
"client_email": "PROJECT_ID@PROJECT_ID.iam.gserviceaccount.com",
"client_id": "000...",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/..."
}
```

Ensure the necessary [policies](https://cloud.google.com/iam/docs/policies) (`roles/aiplatform.user` and possibly `roles/ml.admin`) are in place use the Vertex AI API.

You can add them by navigating to the [IAM Console](https://console.cloud.google.com/iam-admin/iam) and clicking on the _"Edit principal"_ (✏️ pencil icon) next to your _Service Account_.

Alternatively, you can add them through the [gcloud CLI](https://cloud.google.com/sdk/gcloud) as follows:

```sh
gcloud projects add-iam-policy-binding PROJECT_ID \
--member='serviceAccount:PROJECT_ID@PROJECT_ID.iam.gserviceaccount.com' \
--role='roles/aiplatform.user'
```

Some people reported having trouble accessing the API, and adding the role `roles/ml.admin` fixed it:

```sh
gcloud projects add-iam-policy-binding PROJECT_ID \
--member='serviceAccount:PROJECT_ID@PROJECT_ID.iam.gserviceaccount.com' \
--role='roles/ml.admin'
```

If you are not using a _Service Account_:
```sh
gcloud projects add-iam-policy-binding PROJECT_ID \
--member='user:[email protected]' \
--role='roles/aiplatform.user'

gcloud projects add-iam-policy-binding PROJECT_ID \
--member='user:[email protected]' \
--role='roles/ml.admin'
```

#### Option 3: Application Default Credentials (Vertex AI API)

Similar to [Option 2](#option-2-service-account-credentials-file-vertex-ai-api), but you don't need to download a `google-credentials.json`. These automatically find credentials based on your environment. [_Application Default Credentials_](https://cloud.google.com/docs/authentication/application-default-credentials).

Generate them using the gcloud CLI before local development. [gcloud CLI](https://cloud.google.com/sdk/gcloud):

```sh
gcloud auth application-default login
```

For more details about alternative methods and different environments, check the official documentation:
[Set up Application Default Credentials](https://cloud.google.com/docs/authentication/provide-credentials-adc)

## Usage

### Quickstart

For a quick test you can pass your token directly to a new client:

```ruby
client = GeminiAi::Client.new(api_key: "gemini_api_key")
```

### With Config

We can configure Gemini with Ruby using three options.

**Option 1**, API KEY

For a more robust setup, you can configure the gem with your API keys, for example in an `gemini.rb` initializer file. Never hardcode secrets into your codebase - instead use something like [dotenv](https://github.com/motdotla/dotenv) to pass the keys safely into your environments.

```ruby
GeminiAi.configure do |config|
config.api_key = ENV.fetch("GEMINI_API_KEY")
config.service = ENV.fetch("GEMINI_API_SERVICE")
end
```

**Option 2**, Service Account

For the Service Account, provide a `google-credentials.json` file and a `REGION`:

```ruby
GeminiAi.configure do |config|
config.service = 'vertex-ai-api'
config.region = 'us-east4'
config.file_path = 'google-credentials.json'
end
```

**Option 3**, Default Credentials

For _Application Default Credentials_, omit both the `api_key` and the `file_path`:

```ruby
GeminiAi.configure do |config|
config.region = 'us-east4'
config.service = 'vertex-ai-api'
end
```

Then you can create a client like this:

```ruby
client = GeminiAi::Client.new
```

## Methods

### stream_generate_content(contents, model):

- Streams generated text in real-time.
- contents (hash): User input and role information.
- model (string): Optional model name (e.g., gemini-pro).
- Returns an array of candidates objects with generated text and safety ratings.

```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentials

contents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}

stream = client.stream_generate_content(contents, model: 'gemini-pro')
```

In this case, the result will be an array with all the received events:

```ruby
[{ 'candidates' =>
[{ 'content' => {
'role' => 'model',
'parts' => [{ 'text' => 'exmaple poem content.......' }]
},
'finishReason' => 'STOP',
'safetyRatings' =>
[{ 'category' => 'HARM_CATEGORY_HARASSMENT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HATE_SPEECH', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability' => 'NEGLIGIBLE' }] }],
'usageMetadata' => {
'promptTokenCount' => 2,
'candidatesTokenCount' => 8,
'totalTokenCount' => 10
} }]
```

#### with stream

```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentials

contents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}

client.stream_generate_content(contents, model: 'gemini-pro', stream: true) do |part_text, event, parsed, raw|
puts text
end
```
OR

```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentials

contents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}

# Assuming you have a block or procedure (proc) defined
stream_proc = Proc.new do |part_text, event, parsed, raw|
puts part_text
end

client.stream_generate_content(contents, model: 'gemini-pro', stream: true, &stream_proc)
```

In this case, the result will be an array with all the received events:

```ruby
'exmaple poem content.......'
```

### generate_content(contents, model)

- Generates text in a single request.
- contents (hash): User input and role information.
- model (string): Optional model name (e.g., gemini-pro).
- Returns a hash with generated text, safety ratings, and prompt feedback

```ruby
result = client.generate_content(
{ contents: { role: 'user', parts: { text: 'hi!' } } }, model: 'gemini-pro'
)
```

```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentials

contents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}

stream = client.generate_content(contents, model: 'gemini-pro')
```

Result:
```ruby
{ 'candidates' =>
[{ 'content' => { 'parts' => [{ 'text' => 'exampled poem.......' }], 'role' => 'model' },
'finishReason' => 'STOP',
'index' => 0,
'safetyRatings' =>
[{ 'category' => 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HATE_SPEECH', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HARASSMENT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability' => 'NEGLIGIBLE' }] }],
'promptFeedback' =>
{ 'safetyRatings' =>
[{ 'category' => 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HATE_SPEECH', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HARASSMENT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability' => 'NEGLIGIBLE' }] } }
```

#### Verbose Logging

You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middleware/index) to the client in a block, eg. to enable verbose logging with Ruby's [Logger](https://ruby-doc.org/3.2.2/stdlibs/logger/Logger.html):

```ruby
client = GeminiAi::Client.new do |f|
f.response :logger, Logger.new($stdout), bodies: true
end
```

## Development

1) Clone the repository.
2) Run **bin/setup** to install dependencies.
3) Use **bin/console** for interactive exploration.
4) Run **bundle exec** rake install to install the gem locally.

## Compatibility

ruby-gemini-ai gem is compatible with Ruby versions 2.6.7 and higher.

## License

The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).

## Resources and References

Explore the following curated list of resources and references to enhance your understanding throughout the learning process:

- [Google AI for Developers](https://ai.google.dev): Stay updated on the latest developments and resources in the field of Artificial Intelligence by visiting Google AI for Developers.
- [Get started with the Gemini API](https://ai.google.dev/docs): Initiate your journey into the Gemini API with comprehensive guides and documentation provided by Google.
- [Getting Started with the Vertex AI Gemini API with cURL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_curl.ipynb): Explore hands-on examples and tutorials using cURL to kickstart your experience with the Vertex AI Gemini API.
- [Gemini API Documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini): Refer to the official Gemini API documentation for detailed information on model references and implementation guidelines.
- [Vertex AI API Documentation](https://cloud.google.com/vertex-ai/docs/reference): Dive into the Vertex AI API documentation to gain a comprehensive understanding of Vertex AI services.
- [REST Documentation](https://cloud.google.com/vertex-ai/docs/reference/rest): Explore the RESTful API documentation for Vertex AI to facilitate seamless integration with your applications.
- [Google DeepMind Gemini](https://deepmind.google/technologies/gemini/): Gain insights into Google DeepMind's Gemini technology, a cutting-edge advancement in the field of Artificial Intelligence.
- [Stream responses from Generative AI models](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/streaming): Learn how to effectively stream responses from Generative AI models by consulting this specific guide within the Vertex AI documentation.
- [Function calling](https://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/function-calling): Understand the intricacies of function calling in the context of Generative AI models with this guide from the Vertex AI documentation.

These resources collectively provide a comprehensive foundation for your exploration of the Gemini API and Vertex AI services.

## Additional Notes

- As of now, only generate_content is supported with the `vertex-ai-api` service.
- For detailed API documentation and advanced usage, refer to the official Gemini AI documentation Consider adding examples and error handling for a more user-friendly experience.