Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sauravsaini98/ruby-gemini-ai
A Ruby Gem created to communicate with Gemini via Vertex AI, Generative Language API, or AI Studio, Google's generative AI services. It works with Ruby versions 2.6.0 and higher.
https://github.com/sauravsaini98/ruby-gemini-ai
ai gemini gemini-api gemini-pro-api gemini-pro-vision generative-language-api generative-model google-ai google-ai-studio google-gemini google-gemini-ai google-gemini-pro google-vertex-ai ruby-gemini ruby-on-rails vertex-ai
Last synced: 20 days ago
JSON representation
A Ruby Gem created to communicate with Gemini via Vertex AI, Generative Language API, or AI Studio, Google's generative AI services. It works with Ruby versions 2.6.0 and higher.
- Host: GitHub
- URL: https://github.com/sauravsaini98/ruby-gemini-ai
- Owner: SauravSaini98
- License: mit
- Created: 2024-02-16T06:17:09.000Z (10 months ago)
- Default Branch: master
- Last Pushed: 2024-02-17T06:10:54.000Z (10 months ago)
- Last Synced: 2024-11-22T15:41:54.775Z (30 days ago)
- Topics: ai, gemini, gemini-api, gemini-pro-api, gemini-pro-vision, generative-language-api, generative-model, google-ai, google-ai-studio, google-gemini, google-gemini-ai, google-gemini-pro, google-vertex-ai, ruby-gemini, ruby-on-rails, vertex-ai
- Language: Ruby
- Homepage: https://rubygems.org/gems/ruby-gemini-ai
- Size: 17.6 KB
- Stars: 4
- Watchers: 1
- Forks: 3
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Ruby GeminiAi
This guide explains how to seamlessly integrate the powerful Gemini AI API into your Ruby projects. Utilize Gemini's cutting-edge language capabilities for generating text, translating languages, and more.
# Table of Contents
- [Installation](#installation)
- [Bundler](#bundler)
- [Gem Install](#gem-install)
- [Credentials](#credentials)
- [Option 1: API Key (Generative Language API)](#option-1-api-key-generative-language-api)
- [Option 2: Service Account Credentials File (Vertex AI API)](#option-2-service-account-credentials-file-vertex-ai-api)
- [Option 3: Application Default Credentials (Vertex AI API)](#option-3-application-default-credentials-vertex-ai-api)
- [Usage](#usage)
- [Quickstart](#quickstart)
- [With Config](#with-config)
- [Verbose Logging](#verbose-logging)
- [Methods](#methods)
- [stream_generate_content](#stream_generate_content)
- [generate_content](#generate_content)
- [Development](#development)
- [Compatibility](#compatibility)
- [License](#license)
- [Resources and References](#resources-and-references)
- [Additional Notes](#additional-notes)## Installation
### Bundler
Add this line to your application's Gemfile:
```ruby
gem "ruby-gemini-ai"
```And then execute:
```bash
$ bundle install
```### Gem install
Or install with:
```bash
$ gem install ruby-gemini-ai
```and require with:
```ruby
require "gemini-ai"
```## Credentials
- [Option 1: API Key (Generative Language API)](#option-1-api-key-generative-language-api)
- [Option 2: Service Account Credentials File (Vertex AI API)](#option-2-service-account-credentials-file-vertex-ai-api)
- [Option 3: Application Default Credentials (Vertex AI API)](#option-3-application-default-credentials-vertex-ai-api)#### Option 1: API Key (Generative Language API):
Obtain an API Key from your Google Cloud project: [Google Cloud](https://console.cloud.google.com) through the Google Cloud Console: [https://console.cloud.google.com/apis/credentials](https://console.cloud.google.com/apis/credentials).
Enable the Generative Language API service in your Google Cloud Console. which can be done [here](https://console.cloud.google.com/apis/library/generativelanguage.googleapis.com).
Alternatively, you can generate an API Key through Google AI Studio [here](https://makersuite.google.com/app/apikey), which will automatically create a project for you.
#### Option 2: Service Account Credentials File (Vertex AI API)
For the Vertex AI API, create a [Google Cloud](https://console.cloud.google.com) Project and a [_Service Account_](https://cloud.google.com/iam/docs/service-account-overview). Enable the [Vertex AI] (https://cloud.google.com/vertex-ai) API for your project [here](https://console.cloud.google.com/apis/library/aiplatform.googleapis.com).
Generate credentials for your Service Account [here](https://console.cloud.google.com/apis/credentials) and download a JSON file named google-credentials.json.
```json
{
"type": "service_account",
"project_id": "YOUR_PROJECT_ID",
"private_key_id": "a00...",
"private_key": "-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----\n",
"client_email": "PROJECT_ID@PROJECT_ID.iam.gserviceaccount.com",
"client_id": "000...",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/..."
}
```Ensure the necessary [policies](https://cloud.google.com/iam/docs/policies) (`roles/aiplatform.user` and possibly `roles/ml.admin`) are in place use the Vertex AI API.
You can add them by navigating to the [IAM Console](https://console.cloud.google.com/iam-admin/iam) and clicking on the _"Edit principal"_ (✏️ pencil icon) next to your _Service Account_.
Alternatively, you can add them through the [gcloud CLI](https://cloud.google.com/sdk/gcloud) as follows:
```sh
gcloud projects add-iam-policy-binding PROJECT_ID \
--member='serviceAccount:PROJECT_ID@PROJECT_ID.iam.gserviceaccount.com' \
--role='roles/aiplatform.user'
```Some people reported having trouble accessing the API, and adding the role `roles/ml.admin` fixed it:
```sh
gcloud projects add-iam-policy-binding PROJECT_ID \
--member='serviceAccount:PROJECT_ID@PROJECT_ID.iam.gserviceaccount.com' \
--role='roles/ml.admin'
```If you are not using a _Service Account_:
```sh
gcloud projects add-iam-policy-binding PROJECT_ID \
--member='user:[email protected]' \
--role='roles/aiplatform.user'gcloud projects add-iam-policy-binding PROJECT_ID \
--member='user:[email protected]' \
--role='roles/ml.admin'
```#### Option 3: Application Default Credentials (Vertex AI API)
Similar to [Option 2](#option-2-service-account-credentials-file-vertex-ai-api), but you don't need to download a `google-credentials.json`. These automatically find credentials based on your environment. [_Application Default Credentials_](https://cloud.google.com/docs/authentication/application-default-credentials).
Generate them using the gcloud CLI before local development. [gcloud CLI](https://cloud.google.com/sdk/gcloud):
```sh
gcloud auth application-default login
```For more details about alternative methods and different environments, check the official documentation:
[Set up Application Default Credentials](https://cloud.google.com/docs/authentication/provide-credentials-adc)## Usage
### Quickstart
For a quick test you can pass your token directly to a new client:
```ruby
client = GeminiAi::Client.new(api_key: "gemini_api_key")
```### With Config
We can configure Gemini with Ruby using three options.
**Option 1**, API KEY
For a more robust setup, you can configure the gem with your API keys, for example in an `gemini.rb` initializer file. Never hardcode secrets into your codebase - instead use something like [dotenv](https://github.com/motdotla/dotenv) to pass the keys safely into your environments.
```ruby
GeminiAi.configure do |config|
config.api_key = ENV.fetch("GEMINI_API_KEY")
config.service = ENV.fetch("GEMINI_API_SERVICE")
end
```**Option 2**, Service Account
For the Service Account, provide a `google-credentials.json` file and a `REGION`:
```ruby
GeminiAi.configure do |config|
config.service = 'vertex-ai-api'
config.region = 'us-east4'
config.file_path = 'google-credentials.json'
end
```**Option 3**, Default Credentials
For _Application Default Credentials_, omit both the `api_key` and the `file_path`:
```ruby
GeminiAi.configure do |config|
config.region = 'us-east4'
config.service = 'vertex-ai-api'
end
```Then you can create a client like this:
```ruby
client = GeminiAi::Client.new
```## Methods
### stream_generate_content(contents, model):
- Streams generated text in real-time.
- contents (hash): User input and role information.
- model (string): Optional model name (e.g., gemini-pro).
- Returns an array of candidates objects with generated text and safety ratings.```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentialscontents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}stream = client.stream_generate_content(contents, model: 'gemini-pro')
```In this case, the result will be an array with all the received events:
```ruby
[{ 'candidates' =>
[{ 'content' => {
'role' => 'model',
'parts' => [{ 'text' => 'exmaple poem content.......' }]
},
'finishReason' => 'STOP',
'safetyRatings' =>
[{ 'category' => 'HARM_CATEGORY_HARASSMENT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HATE_SPEECH', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability' => 'NEGLIGIBLE' }] }],
'usageMetadata' => {
'promptTokenCount' => 2,
'candidatesTokenCount' => 8,
'totalTokenCount' => 10
} }]
```#### with stream
```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentialscontents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}client.stream_generate_content(contents, model: 'gemini-pro', stream: true) do |part_text, event, parsed, raw|
puts text
end
```
OR```ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentialscontents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}# Assuming you have a block or procedure (proc) defined
stream_proc = Proc.new do |part_text, event, parsed, raw|
puts part_text
endclient.stream_generate_content(contents, model: 'gemini-pro', stream: true, &stream_proc)
```In this case, the result will be an array with all the received events:
```ruby
'exmaple poem content.......'
```### generate_content(contents, model)
- Generates text in a single request.
- contents (hash): User input and role information.
- model (string): Optional model name (e.g., gemini-pro).
- Returns a hash with generated text, safety ratings, and prompt feedback```ruby
result = client.generate_content(
{ contents: { role: 'user', parts: { text: 'hi!' } } }, model: 'gemini-pro'
)
``````ruby
client = GeminiAi::Client.new
# Assuming you configured with your API key or credentialscontents = {
contents: {
role: 'user',
parts: {
text: 'Write a poem about the ocean.'
}
}
}stream = client.generate_content(contents, model: 'gemini-pro')
```Result:
```ruby
{ 'candidates' =>
[{ 'content' => { 'parts' => [{ 'text' => 'exampled poem.......' }], 'role' => 'model' },
'finishReason' => 'STOP',
'index' => 0,
'safetyRatings' =>
[{ 'category' => 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HATE_SPEECH', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HARASSMENT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability' => 'NEGLIGIBLE' }] }],
'promptFeedback' =>
{ 'safetyRatings' =>
[{ 'category' => 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HATE_SPEECH', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_HARASSMENT', 'probability' => 'NEGLIGIBLE' },
{ 'category' => 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability' => 'NEGLIGIBLE' }] } }
```#### Verbose Logging
You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middleware/index) to the client in a block, eg. to enable verbose logging with Ruby's [Logger](https://ruby-doc.org/3.2.2/stdlibs/logger/Logger.html):
```ruby
client = GeminiAi::Client.new do |f|
f.response :logger, Logger.new($stdout), bodies: true
end
```## Development
1) Clone the repository.
2) Run **bin/setup** to install dependencies.
3) Use **bin/console** for interactive exploration.
4) Run **bundle exec** rake install to install the gem locally.## Compatibility
ruby-gemini-ai gem is compatible with Ruby versions 2.6.7 and higher.
## License
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
## Resources and References
Explore the following curated list of resources and references to enhance your understanding throughout the learning process:
- [Google AI for Developers](https://ai.google.dev): Stay updated on the latest developments and resources in the field of Artificial Intelligence by visiting Google AI for Developers.
- [Get started with the Gemini API](https://ai.google.dev/docs): Initiate your journey into the Gemini API with comprehensive guides and documentation provided by Google.
- [Getting Started with the Vertex AI Gemini API with cURL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_curl.ipynb): Explore hands-on examples and tutorials using cURL to kickstart your experience with the Vertex AI Gemini API.
- [Gemini API Documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini): Refer to the official Gemini API documentation for detailed information on model references and implementation guidelines.
- [Vertex AI API Documentation](https://cloud.google.com/vertex-ai/docs/reference): Dive into the Vertex AI API documentation to gain a comprehensive understanding of Vertex AI services.
- [REST Documentation](https://cloud.google.com/vertex-ai/docs/reference/rest): Explore the RESTful API documentation for Vertex AI to facilitate seamless integration with your applications.
- [Google DeepMind Gemini](https://deepmind.google/technologies/gemini/): Gain insights into Google DeepMind's Gemini technology, a cutting-edge advancement in the field of Artificial Intelligence.
- [Stream responses from Generative AI models](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/streaming): Learn how to effectively stream responses from Generative AI models by consulting this specific guide within the Vertex AI documentation.
- [Function calling](https://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/function-calling): Understand the intricacies of function calling in the context of Generative AI models with this guide from the Vertex AI documentation.These resources collectively provide a comprehensive foundation for your exploration of the Gemini API and Vertex AI services.
## Additional Notes
- As of now, only generate_content is supported with the `vertex-ai-api` service.
- For detailed API documentation and advanced usage, refer to the official Gemini AI documentation Consider adding examples and error handling for a more user-friendly experience.