Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sb-ai-lab/replay
A Comprehensive Framework for Building End-to-End Recommendation Systems with State-of-the-Art Models
https://github.com/sb-ai-lab/replay
algorithms collaborative-filtering deep-learning distributed-computing evaluation machine-learning matrix-factorization pyspark pytorch recommendation-algorithms recommender-system recsys transformers
Last synced: 7 days ago
JSON representation
A Comprehensive Framework for Building End-to-End Recommendation Systems with State-of-the-Art Models
- Host: GitHub
- URL: https://github.com/sb-ai-lab/replay
- Owner: sb-ai-lab
- License: apache-2.0
- Created: 2022-04-19T13:34:50.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2025-02-03T16:04:31.000Z (11 days ago)
- Last Synced: 2025-02-04T17:53:12.122Z (10 days ago)
- Topics: algorithms, collaborative-filtering, deep-learning, distributed-computing, evaluation, machine-learning, matrix-factorization, pyspark, pytorch, recommendation-algorithms, recommender-system, recsys, transformers
- Language: Python
- Homepage: https://sb-ai-lab.github.io/RePlay/
- Size: 36.6 MB
- Stars: 316
- Watchers: 6
- Forks: 30
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
![]()
[![GitHub License](https://img.shields.io/github/license/sb-ai-lab/RePlay)](https://github.com/sb-ai-lab/RePlay/blob/main/LICENSE)
[![PyPI - Version](https://img.shields.io/pypi/v/replay-rec)](https://pypi.org/project/replay-rec)
[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://sb-ai-lab.github.io/RePlay/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/replay-rec)](https://pypistats.org/packages/replay-rec)
[![GitHub Workflow Status (with event)](https://img.shields.io/github/actions/workflow/status/sb-ai-lab/replay/main.yml)](https://github.com/sb-ai-lab/RePlay/actions/workflows/main.yml?query=branch%3Amain)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Python Versions](https://img.shields.io/pypi/pyversions/replay-rec.svg?logo=python&logoColor=white)](https://pypi.org/project/replay-rec)
[![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/sb-ai-lab/RePlay/discussions)RePlay is an advanced framework designed to facilitate the development and evaluation of recommendation systems. It provides a robust set of tools covering the entire lifecycle of a recommendation system pipeline:
## 🚀 Features:
* **Data Preprocessing and Splitting:** Streamlines the data preparation process for recommendation systems, ensuring optimal data structure and format for efficient processing.
* **Wide Range of Recommendation Models:** Enables building of recommendation models from State-of-the-Art to commonly-used baselines and evaluate their performance and quality.
* **Hyperparameter Optimization:** Offers tools for fine-tuning model parameters to achieve the best possible performance, reducing the complexity of the optimization process.
* **Comprehensive Evaluation Metrics:** Incorporates a wide range of evaluation metrics to assess the accuracy and effectiveness of recommendation models.
* **Model Ensemble and Hybridization:** Supports combining predictions from multiple models and creating two-level (ensemble) models to enhance the quality of recommendations.
* **Seamless Mode Transition:** Facilitates easy transition from offline experimentation to online production environments, ensuring scalability and flexibility.## 💻 Hardware and Environment Compatibility:
1. **Diverse Hardware Support:** Compatible with various hardware configurations including CPU, GPU, Multi-GPU.
2. **Cluster Computing Integration:** Integrating with PySpark for distributed computing, enabling scalability for large-scale recommendation systems.* [Quickstart](#quickstart)
* [Installation](#installation)
* [Resources](#examples)
* [Contributing to RePlay](#contributing)```bash
pip install replay-rec[all]
```Pyspark-based model and [fast](https://github.com/sb-ai-lab/RePlay/blob/main/examples/11_sasrec_dataframes_comparison.ipynb) polars-based data preprocessing:
```python
from polars import from_pandas
from rs_datasets import MovieLensfrom replay.data import Dataset, FeatureHint, FeatureInfo, FeatureSchema, FeatureType
from replay.data.dataset_utils import DatasetLabelEncoder
from replay.metrics import HitRate, NDCG, Experiment
from replay.models import ItemKNN
from replay.utils.spark_utils import convert2spark
from replay.utils.session_handler import State
from replay.splitters import RatioSplitterspark = State().session
ml_1m = MovieLens("1m")
K = 10# convert data to polars
interactions = from_pandas(ml_1m.ratings)# data splitting
splitter = RatioSplitter(
test_size=0.3,
divide_column="user_id",
query_column="user_id",
item_column="item_id",
timestamp_column="timestamp",
drop_cold_items=True,
drop_cold_users=True,
)
train, test = splitter.split(interactions)# datasets creation
feature_schema = FeatureSchema(
[
FeatureInfo(
column="user_id",
feature_type=FeatureType.CATEGORICAL,
feature_hint=FeatureHint.QUERY_ID,
),
FeatureInfo(
column="item_id",
feature_type=FeatureType.CATEGORICAL,
feature_hint=FeatureHint.ITEM_ID,
),
FeatureInfo(
column="rating",
feature_type=FeatureType.NUMERICAL,
feature_hint=FeatureHint.RATING,
),
FeatureInfo(
column="timestamp",
feature_type=FeatureType.NUMERICAL,
feature_hint=FeatureHint.TIMESTAMP,
),
]
)train_dataset = Dataset(feature_schema=feature_schema, interactions=train)
test_dataset = Dataset(feature_schema=feature_schema, interactions=test)# data encoding
encoder = DatasetLabelEncoder()
train_dataset = encoder.fit_transform(train_dataset)
test_dataset = encoder.transform(test_dataset)# convert datasets to spark
train_dataset.to_spark()
test_dataset.to_spark()# model training
model = ItemKNN()
model.fit(train_dataset)# model inference
encoded_recs = model.predict(
dataset=train_dataset,
k=K,
queries=test_dataset.query_ids,
filter_seen_items=True,
)recs = encoder.query_and_item_id_encoder.inverse_transform(encoded_recs)
# model evaluation
metrics = Experiment(
[NDCG(K), HitRate(K)],
test,
query_column="user_id",
item_column="item_id",
rating_column="rating",
)
metrics.add_result("ItemKNN", recs)
print(metrics.results)
```Installation via `pip` package manager is recommended by default:
```bash
pip install replay-rec
```In this case it will be installed the `core` package without `PySpark` and `PyTorch` dependencies.
Also `experimental` submodule will not be installed.To install `experimental` submodule please specify the version with `rc0` suffix.
For example:```bash
pip install replay-rec==XX.YY.ZZrc0
```### Extras
In addition to the core package, several extras are also provided, including:
- `[spark]`: Install PySpark functionality
- `[torch]`: Install PyTorch and Lightning functionality
- `[all]`: `[spark]` `[torch]`Example:
```bash
# Install core package with PySpark dependency
pip install replay-rec[spark]# Install package with experimental submodule and PySpark dependency
pip install replay-rec[spark]==XX.YY.ZZrc0
```To build RePlay from sources please use the [instruction](CONTRIBUTING.md#installing-from-the-source).
### Usage examples
1. [01_replay_basics.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/01_replay_basics.ipynb) - get started with RePlay.
2. [02_models_comparison.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/02_models_comparison.ipynb) - reproducible models comparison on [MovieLens-1M dataset](https://grouplens.org/datasets/movielens/1m/).
3. [03_features_preprocessing_and_lightFM.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/03_features_preprocessing_and_lightFM.ipynb) - LightFM example with pyspark for feature preprocessing.
4. [04_splitters.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/04_splitters.ipynb) - An example of using RePlay data splitters.
5. [05_feature_generators.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/05_feature_generators.ipynb) - Feature generation with RePlay.
6. [06_item2item_recommendations.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/06_item2item_recommendations.ipynb) - Item to Item recommendations example.
7. [07_filters.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/07_filters.ipynb) - An example of using filters.
8. [08_recommending_for_categories.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/08_recommending_for_categories.ipynb) - An example of recommendation for product categories.
9. [09_sasrec_example.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/09_sasrec_example.ipynb) - An example of using transformer-based SASRec model to generate recommendations.
10. [10_bert4rec_example.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/10_bert4rec_example.ipynb) - An example of using transformer-based BERT4Rec model to generate recommendations.
11. [11_sasrec_dataframes_comparison.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/11_sasrec_dataframes_comparison.ipynb) - speed comparison of using different frameworks (pandas, polars, pyspark) for data processing during SASRec training.
12. [12_neural_ts_exp.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/12_neural_ts_exp.ipynb) - An example of using Neural Thompson Sampling bandit model (based on Wide&Deep architecture).
13. [13_personalized_bandit_comparison.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/13_personalized_bandit_comparison.ipynb) - A comparison of context-free and contextual bandit models.
14. [14_hierarchical_recommender.ipynb](https://github.com/sb-ai-lab/RePlay/blob/main/examples/14_hierarchical_recommender.ipynb) - An example of using HierarchicalRecommender with user-disjoint LinUCB.### Videos and papers
* **Video guides**:
- [Replay for offline recommendations, AI Journey 2021](https://www.youtube.com/watch?v=ejQZKGAG0xs)* **Research papers**:
- [RePlay: a Recommendation Framework for Experimentation and Production Use](https://arxiv.org/abs/2409.07272) Alexey Vasilev, Anna Volodkevich, Denis Kulandin, Tatiana Bysheva, Anton Klenitskiy. In The 18th ACM Conference on Recommender Systems (RecSys '24)
- [Turning Dross Into Gold Loss: is BERT4Rec really better than SASRec?](https://doi.org/10.1145/3604915.3610644) Anton Klenitskiy, Alexey Vasilev. In The 17th ACM Conference on Recommender Systems (RecSys '23)
- [The Long Tail of Context: Does it Exist and Matter?](https://arxiv.org/abs/2210.01023). Konstantin Bauman, Alexey Vasilev, Alexander Tuzhilin. In Workshop on Context-Aware Recommender Systems (CARS) (RecSys '22)
- [Multiobjective Evaluation of Reinforcement Learning Based Recommender Systems](https://doi.org/10.1145/3523227.3551485). Alexey Grishanov, Anastasia Ianina, Konstantin Vorontsov. In The 16th ACM Conference on Recommender Systems (RecSys '22)
- [Quality Metrics in Recommender Systems: Do We Calculate Metrics Consistently?](https://doi.org/10.1145/3460231.3478848) Yan-Martin Tamm, Rinchin Damdinov, Alexey Vasilev. In The 15th ACM Conference on Recommender Systems (RecSys '21)
## 💡 Contributing to RePlayWe welcome community contributions. For details please check our [contributing guidelines](CONTRIBUTING.md).