Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/scalaone/azure-openai-proxy

A tool that transforms OpenAI API requests into Azure OpenAI API requests, allowing OpenAI-compatible applications to seamlessly use Azure OpenAI. 一个 OpenAI API 的代理工具,能将 OpenAI API 请求转为 Azure OpenAI API 请求,从而让只支持 OpenAI 的应用程序无缝使用 Azure OpenAI。
https://github.com/scalaone/azure-openai-proxy

azure-openai azure-openai-proxy azureopenai chatgpt gpt-35-turbo gpt-4 gpt-4-32k nextjs nextjs13

Last synced: about 2 months ago
JSON representation

A tool that transforms OpenAI API requests into Azure OpenAI API requests, allowing OpenAI-compatible applications to seamlessly use Azure OpenAI. 一个 OpenAI API 的代理工具,能将 OpenAI API 请求转为 Azure OpenAI API 请求,从而让只支持 OpenAI 的应用程序无缝使用 Azure OpenAI。

Awesome Lists containing this project

README

        

# Azure OpenAI Proxy

English | [简体中文](./README.zh-CN.md)

Azure OpenAI Proxy is a tool that transforms OpenAI API requests into Azure OpenAI API requests, allowing OpenAI-compatible applications to seamlessly use Azure Open AI.

## Prerequisites

An Azure OpenAI account is required to use Azure OpenAI Proxy.

## Azure Deployment

[![Deploy to Azure](https://aka.ms/deploytoazurebutton)](https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fscalaone%2Fazure-openai-proxy%2Fmain%2Fdeploy%2Fazure-deploy.json)

Remember to:

- Select the region that matches your Azure OpenAI resource for best performance.
- If deployment fails because the 'proxywebapp' name is already taken, change the resource prefix and redeploy.
- The deployed proxy app is part of a B1 pricing tier Azure web app plan, which can be modified in the Azure Portal after deployment.

## Docker Deployment

To deploy using Docker, execute the following command:

```bash
docker run -d -p 3000:3000 scalaone/azure-openai-proxy
```

## Local Execution and Testing

Follow these steps:

1. Install NodeJS 20.
2. Clone the repository in the command line window.
3. Run `npm install` to install the dependencies.
4. Run `npm start` to start the application.
5. Use the script below for testing. Replace `AZURE_RESOURCE_ID`, `AZURE_MODEL_DEPLOYMENT`, and `AZURE_API_KEY` before running. The default value for `AZURE_API_VERSION` is `2024-02-01` and is optional.

Test script
```bash
curl -X "POST" "http://localhost:3000/v1/chat/completions" \
-H 'Authorization: AZURE_RESOURCE_ID:AZURE_MODEL_DEPLOYMENT:AZURE_API_KEY:AZURE_API_VERSION' \
-H 'Content-Type: application/json; charset=utf-8' \
-d $'{
"messages": [
{
"role": "system",
"content": "You are an AI assistant that helps people find information."
},
{
"role": "user",
"content": "hi."
}
],
"temperature": 1,
"model": "gpt-3.5-turbo",
"stream": false
}'
```

## Tested Applications

The azure-openai-proxy has been tested and confirmed to work with the following applications:

| Application Name | Docker-compose File for E2E Test |
| --------------------------------------------------------------- | --------------------------------------------------------------- |
| [chatgpt-lite](https://github.com/blrchen/chatgpt-lite) | [docker-compose.yml](./e2e/chatgpt-lite/docker-compose.yml) |
| [chatgpt-minimal](https://github.com/blrchen/chatgpt-minimal) | [docker-compose.yml](./e2e/chatgpt-minimal/docker-compose.yml) |
| [chatgpt-next-web](https://github.com/Yidadaa/ChatGPT-Next-Web) | [docker-compose.yml](./e2e/chatgpt-next-web/docker-compose.yml) |
| [chatbot-ui](https://github.com/mckaywrigley/chatbot-ui) | [docker-compose.yml](./e2e/chatbot-ui/docker-compose.yml) |
| [chatgpt-web](https://github.com/Chanzhaoyu/chatgpt-web) | [docker-compose.yml](./e2e/chatgpt-web/docker-compose.yml) |

To test locally, follow these steps:

1. Clone the repository in a command-line window.
2. Update the `OPENAI_API_KEY` environment variable with `AZURE_RESOURCE_ID:AZURE_MODEL_DEPLOYMENT:AZURE_API_KEY`. Alternatively, update the OPENAI_API_KEY value in the docker-compose.yml file directly.
3. Navigate to the directory containing the `docker-compose.yml` file for the application you want to test.
4. Execute the build command: `docker-compose build`.
5. Start the service: `docker-compose up -d`.
6. Access the application locally using the port defined in the docker-compose.yml file. For example, visit .

## FAQs

Q: What are `AZURE_RESOURCE_ID`,`AZURE_MODEL_DEPLOYMENT`, and `AZURE_API_KEY`?
A: These can be found in the Azure management portal. See the image below for reference:
![resource-and-model](./docs/images/resource-and-model.jpg)

Q: How can I use gpt-4 and gpt-4-32k models?
A: To use gpt-4 and gpt-4-32k models, follow the key format below:
`AZURE_RESOURCE_ID:gpt-3.5-turbo|AZURE_MODEL_DEPLOYMENT,gpt-4|AZURE_MODEL_DEPLOYMENT,gpt-4-32k|AZURE_MODEL_DEPLOYMENT:AZURE_API_KEY:AZURE_API_VERSION`

## Contributing

We welcome all PR submissions.