Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/scheckmedia/keras-shufflenet
ShuffleNet Implementation using Keras Functional Framework 2.0
https://github.com/scheckmedia/keras-shufflenet
deep-learning keras machine-learning neural-network python2 python3 research tensorflow
Last synced: 2 months ago
JSON representation
ShuffleNet Implementation using Keras Functional Framework 2.0
- Host: GitHub
- URL: https://github.com/scheckmedia/keras-shufflenet
- Owner: scheckmedia
- License: mit
- Archived: true
- Created: 2017-10-20T11:35:07.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2020-10-16T16:25:44.000Z (about 4 years ago)
- Last Synced: 2024-08-01T22:50:06.504Z (6 months ago)
- Topics: deep-learning, keras, machine-learning, neural-network, python2, python3, research, tensorflow
- Language: Python
- Homepage:
- Size: 15.8 MB
- Stars: 78
- Watchers: 5
- Forks: 40
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-image-classification - unofficial-keras : https://github.com/scheckmedia/keras-shufflenet
- awesome-image-classification - unofficial-keras : https://github.com/scheckmedia/keras-shufflenet
README
# Keras ShuffleNet [![Build Status](https://travis-ci.org/scheckmedia/keras-shufflenet.svg?branch=master)](https://travis-ci.org/scheckmedia/keras-shufflenet)
ShuffleNet Implementation using Keras Functional Framework 2.0There is a [weight file](weigths/ShuffleNet_1X_g3_br_0.25_373.hdf5) for groups=3 but I was not able to reproduce the accuracy from the paper.
Current accuracy for ImageNet is **0.5228**.### Library Versions
- Keras v2.0.8+
- Tensorflow 1.0+### References
1) [Keras Framework](https://www.keras.io)
2) [ShuffleNet Paper](https://arxiv.org/pdf/1707.01083.pdf)
### Licence
MIT License
Note: If you find this project useful, please include reference link in your work.