Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/schen59/SRLab
single image super resolution algorithm implementation
https://github.com/schen59/SRLab
Last synced: 3 months ago
JSON representation
single image super resolution algorithm implementation
- Host: GitHub
- URL: https://github.com/schen59/SRLab
- Owner: schen59
- Created: 2014-02-23T08:43:47.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2016-06-20T04:24:58.000Z (over 8 years ago)
- Last Synced: 2024-05-27T12:12:09.034Z (6 months ago)
- Language: Python
- Size: 1.17 MB
- Stars: 36
- Watchers: 9
- Forks: 16
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# SRLab
Single image super resolution algorithm implementation (in progress)
## Demo:
### Source(128X128)
![Source(128X128):](test_data/babyface_4.png)
### 4X
![4X](test_data/babyface_4x.png)
Project Home Page [here](https://schen59.github.io/#/SRLab)
More Project [Demo](http://shaofeng_2010.gegahost.net/SR/SingleImgSR.html)
## Requirement:
* Supported python version 2.7* pip install Pillow
* pip install mock==1.0.1
* pip install six
* pip install -U numpy scipy scikit-learn
## Example:
image = Image.open("test_data/babyface_4.png")
sr_image = SRImageFactory.create_sr_image(image)
reconstructed_sr_image = sr_image.reconstruct(2, 'iccv09')
reconstructed_sr_image.save("test_data/babyface_sr.png", "png")
## Note:
Need to work more on performance, it will take around 20 seconds to reconstruct a 128*128 image to
2X its original size, and take around 1 minutes to 4X its original size.(On i7 Cpu, 8G ram)### Run the examples in example/sr_image_example.py:
Add root directory of SRLab to PYTHONPATH:
export PYTHONPATH=$PYTHONPATH:~/schen59/SRLab
Go to the example directory:
cd example
Run the example script:
python sr_image_example.py