Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/scikit-hep/histbook

Versatile, high-performance histogram toolkit for Numpy.
https://github.com/scikit-hep/histbook

Last synced: 3 months ago
JSON representation

Versatile, high-performance histogram toolkit for Numpy.

Awesome Lists containing this project

README

        

.. image:: docs/source/logo-500px.png
:alt: histbook
:target: http://histbook.readthedocs.io/en/latest/

histbook
========

.. image:: https://travis-ci.org/scikit-hep/histbook.svg?branch=master
:target: https://travis-ci.org/scikit-hep/histbook

.. image:: https://coveralls.io/repos/github/scikit-hep/histbook/badge.svg?branch=master
:target: https://coveralls.io/github/scikit-hep/histbook?branch=master

.. image:: https://readthedocs.org/projects/histbook/badge/
:target: http://histbook.readthedocs.io/

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1284427.svg
:target: https://doi.org/10.5281/zenodo.1284427

.. image:: https://mybinder.org/badge.svg
:target: https://mybinder.org/v2/gh/scikit-hep/histbook/master?filepath=binder%2Ftutorial.ipynb

.. inclusion-marker-1-do-not-remove

Versatile, high-performance histogram toolkit for Numpy.

.. inclusion-marker-1-5-do-not-remove

histbook computes histograms from Numpy arrays. It differs from most other histogramming tools in that its histograms are primarily tables of numbers, rather than display graphics. Histograms can be filled and refilled iteratively through a large dataset, or in parallel and later combined with addition\*. Histograms have arbitrarily many dimensions with convenient methods for selecting, rebinning, and projecting into lower-dimensional spaces.

Axis dimensions are managed by algebraic expressions, rather than string labels or index positions, so they are computable: an axis named ``x + y`` requires two Numpy arrays, ``x`` and ``y``, which will be added before filling the histogram. Expressions in different axes or different histograms in the same "book" (a collection of named histograms) are computed in an optimized way, reusing subexpressions wherever possible for quicker filling without giving up clarity.

Histogram data may be exported to a variety of formats, such as `Pandas `__, `ROOT `__, and `HEPData `__. It can also be plotted with `Vega-Lite `__, which makes short work of projecting many dimensions of data as overlays and trellises.

(\*In this respect, histbook is like histogramming packages developed for particle physics, from `CERN HBOOK `__ in the 1970's (name similarity intended) to modern-day `ROOT `__.)

.. inclusion-marker-2-do-not-remove

Installation
============

Install histbook like any other Python package:

.. code-block:: bash

pip install histbook --user

or similar (use ``sudo``, ``--user``, ``virtualenv``, or pip-in-conda if you wish).

Strict dependencies:
====================

- `Python `__ (2.7+, 3.4+)
- `Numpy `__ (1.8.0+)

Recommended dependencies:
=========================

- `Pandas `__ for more convenient programmatic access to bin contents
- `Jupyter Notebook `__ for interlaced histogramming and plotting
- `JupyterLab `__ for a complete IDE-like environment
- `ipyvega `__ to view plots in a Jupyter Notebook (not needed for JupyterLab)
- `Altair `__ to mix histograms with Altair graphics (usable in both Jupyter Notebook and JupyterLab)
- `VegaScope `__ to view plots in a web browser *without* Jupyter
- `ROOT `__ to analyze histograms in a complete statistical toolkit
- `uproot `__ to access ROOT files without the full ROOT framework

.. TODO NumExpr http://numexpr.readthedocs.io/en/latest/user_guide.html to accelerate the calculation of complex expressions

.. inclusion-marker-3-do-not-remove

Tutorial
========

**Table of contents:**

* `Getting started <#getting-started>`__
* `Axis constructors <#axis-constructors>`__
* `Profile plots <#profile-plots>`__
* `Weighted data <#weighted-data>`__
* `Books of histograms <#books-of-histograms>`__
* `Manipulation methods <#manipulation-methods>`__

- `select <#select>`__
- `project <#project>`__
- `drop <#drop>`__
- `rebin, rebinby <#rebin-rebinby>`__

* `Combining histograms <#combining-histograms>`__
* `Tabular output <#tabular-output>`__

- `table <#table>`__
- `fraction <#fraction>`__
- `pandas <#pandas>`__

* `Plotting methods <#plotting-methods>`__
* `Exporting to ROOT <#exporting-to-root>`__

Interactive tutorial
====================

Run `this tutorial `__ on Binder.

Reference documentation
=======================

* `Histograms `__
* `Books of histograms `__
* `Axis descriptors `__

Getting started
---------------

Install histbook and pandas. If you'll be using a Jupyter Notebook, install ipyvega. If you'll be using a bare Python terminal, install VegaScope. If you'll be using JupyterLab, no visualization library is necessary.

.. code-block:: bash

pip install histbook pandas vega vegascope --user # "vega" is ipyvega

Then start your environment to get a Python prompt.

.. code-block:: python

>>> from histbook import *
>>> import numpy

and create a canvas to draw `Vega-Lite `__ graphics, if necessary.

.. code-block:: python

>>> from vega import VegaLite as canvas # for ipyvega in Jupyter Notebook
>>> import vegascope; canvas = vegascope.LocalCanvas() # for VegaScope in bare Python
# JupyterLab doesn't need anything

Let's start by histogramming a simple array of data.

.. code-block:: python

>>> array = numpy.random.normal(0, 1, 1000000)
>>> histogram = Hist(bin("data", 10, -5, 5))
>>> histogram.fill(data=array)
>>> histogram.step("data").to(canvas) # for JupyterLab, drop ".to(canvas)"

.. image:: docs/source/intro-1.png

*What just happened here?*

- The first line created a million-element Numpy ``array``.
- The second created a one-dimensional ``histogram``, splitting ``data`` into 10 bins from −5 to 5.
- The third line incremented histogram bins by counting the number of values that lie within each of the 10 subintervals.
- The fourth line projected the hypercube onto steps in the ``data`` axis and passed the Vega-Lite visualization to ``canvas``.

We could also access the data as a table, as a `Pandas DataFrame `__:

.. code-block:: python

>>> histogram.pandas()

.. code-block::

count() err(count())
data
[-inf, -5.0) 0.0 0.000000
[-5.0, -4.0) 33.0 5.744563
[-4.0, -3.0) 1247.0 35.312887
[-3.0, -2.0) 21260.0 145.808093
[-2.0, -1.0) 136067.0 368.872607
[-1.0, 0.0) 341355.0 584.255937
[0.0, 1.0) 341143.0 584.074482
[1.0, 2.0) 136072.0 368.879384
[2.0, 3.0) 21474.0 146.540097
[3.0, 4.0) 1320.0 36.331804
[4.0, 5.0) 29.0 5.385165
[5.0, inf) 0.0 0.000000
{NaN} 0.0 0.000000

including underflow (``[-inf, -5.0)``), overflow (``[5.0, inf)``), and nanflow (``{NaN}``). In the absence of weights, the error in the count is the square root of the count (approximation of `Poisson statistics `__; histbook makes the same statistical assumptions as ROOT).

This example was deliberately simple. We can extend the binning to two dimensions and use expressions in the axis labels, rather than simple names:

.. code-block:: python

>>> import math
>>> hist = Hist(bin("sqrt(x**2 + y**2)", 5, 0, 1),
... bin("arctan2(y, x)", 3, -math.pi, math.pi))
>>> hist.fill(x=numpy.random.normal(0, 1, 1000000),
... y=numpy.random.normal(0, 1, 1000000))
>>> beside(hist.step("sqrt(y**2 + x**2)"), hist.step("arctan2(y,x)")).to(canvas)

.. image:: docs/source/intro-2.png

Note that I defined the first axis as ``sqrt(x**2 + y**2)`` and then accessed it as ``sqrt(y**2 + x**2)`` (x and y are reversed). The text between quotation marks is not a label that must be matched exactly, it's a symbolic expression that is matched algebraically.

The data contained in the `Hist `__ is two-dimensional, which you can see by printing it as a Pandas table. (Pandas pretty-prints the nested indexes.)

.. code-block:: python

>>> hist.pandas()

.. code-block::

count() err(count())
sqrt(x**2 + y**2) arctan2(y, x)
[-inf, 0.0) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 0.0 0.000000
[-1.0471975512, 1.0471975512) 0.0 0.000000
[1.0471975512, 3.14159265359) 0.0 0.000000
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
[0.0, 0.2) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 6704.0 81.877958
[-1.0471975512, 1.0471975512) 6595.0 81.209605
[1.0471975512, 3.14159265359) 6409.0 80.056230
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
[0.2, 0.4) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 19008.0 137.869504
[-1.0471975512, 1.0471975512) 19312.0 138.967622
[1.0471975512, 3.14159265359) 19137.0 138.336546
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
[0.4, 0.6) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 29266.0 171.073084
[-1.0471975512, 1.0471975512) 29163.0 170.771778
[1.0471975512, 3.14159265359) 29293.0 171.151979
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
[0.6, 0.8) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 36289.0 190.496719
[-1.0471975512, 1.0471975512) 36227.0 190.333917
[1.0471975512, 3.14159265359) 36145.0 190.118384
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
[0.8, 1.0) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 39931.0 199.827426
[-1.0471975512, 1.0471975512) 39769.0 199.421664
[1.0471975512, 3.14159265359) 39752.0 199.379036
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
[1.0, inf) [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 202393.0 449.881095
[-1.0471975512, 1.0471975512) 202686.0 450.206619
[1.0471975512, 3.14159265359) 201921.0 449.356206
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000
{NaN} [-inf, -3.14159265359) 0.0 0.000000
[-3.14159265359, -1.0471975512) 0.0 0.000000
[-1.0471975512, 1.0471975512) 0.0 0.000000
[1.0471975512, 3.14159265359) 0.0 0.000000
[3.14159265359, inf) 0.0 0.000000
{NaN} 0.0 0.000000

With multiple dimensions, we can project it out different ways. The `overlay `__ method draws all the bins of one axis as separate lines in the projection of the other.

.. code-block:: python

>>> hist.overlay("arctan2(y, x)").step("sqrt(x**2+y**2)").to(canvas)

.. image:: docs/source/intro-3.png

The `stack `__ method draws them cumulatively, though it only works with `area `__ (filled) rendering.

.. code-block:: python

>>> r = "sqrt(x**2 + y**2)"
>>> phi = "arctan2(y, x)"
>>> hist.stack(phi).area(r).to(canvas)

.. image:: docs/source/intro-4.png

The underflow, overflow, and nanflow curves are empty. Let's exclude them with a post-aggregation selection. You can select at any bin boundary of any axis, as long as the inequalities match (e.g. ``<=`` for left edges and ``<`` for right edges for an axis with ``closedlow=True``).

.. code-block:: python

>>> hist.select("-pi <= arctan2(y, x) < pi").stack(phi).area(r).to(canvas)

.. image:: docs/source/intro-5.png

We can also split side-by-side and top-down:

.. code-block:: python

>>> hist.select("-pi <= arctan2(y, x) < pi").beside(phi).line(r).to(canvas)

.. image:: docs/source/intro-6.png

.. code-block:: python

>>> hist.select("-pi <= arctan2(y, x) < pi").below(phi).marker(r, error=False).to(canvas)

.. image:: docs/source/intro-7.png

Notice that the three subfigures are labeled by their ``arctan2(y, x)`` bins. This "trellis plot" formed with `beside `__ and `below `__ separated data just as `overlay `__ and `stack `__ separated data. Using all but one together, we could visualize four dimensions at once:

.. code-block:: python

>>> import random
>>> labels = "one", "two", "three"
>>> hist = Hist(groupby("a"), # categorical axis: distinct strings are bins
... cut("b > 1"), # cut axis: two bins (pass and fail)
... split("c", (-3, 0, 1, 2, 3)), # non-uniformly split the data
... bin("d", 50, -3, 3)) # uniform bins, conventional histogram
>>> hist.fill(a=[random.choice(labels) for i in range(1000000)],
... b=numpy.random.normal(0, 1, 1000000),
... c=numpy.random.normal(0, 1, 1000000),
... d=numpy.random.normal(0, 1, 1000000))
>>> hist.beside("a").below("b > 1").overlay("c").step("d").to(canvas)

.. image:: docs/source/intro-8.png

In the above, only the last line does any drawing. The syntax is deliberately succinct to encourage interactive exploration. For instance, you can quickly switch from plotting "``c``" side-by-side with "``b > 1``" as bars:

.. code-block:: python

>>> hist.beside("c").bar("b > 1").to(canvas)

.. image:: docs/source/intro-9.png

to plotting "``b > 1``" side-by-side with "``c``" as bars:

.. code-block:: python

>>> hist.beside("b > 1").bar("c").to(canvas)

.. image:: docs/source/intro-10.png

or rather, as an area:

.. code-block:: python

>>> hist.beside("b > 1").area("c").to(canvas)

.. image:: docs/source/intro-11.png

We see the same trend in different ways. Whatever axes are not mentioned are summed over: imagine a hypercube whose shadows you project onto the graphical elements of bars, areas, lines, overlays, and trellises.

Axis constructors
-----------------

Histograms can be built from the following types of axis:

* `groupby(expr) `__ to bin by unique values, usually strings or integers (categorical binning)
* `groupbin(expr, binwidth) `__ to create new bins when they appear in the data (regularly spaced, sparse binning)
* `bin(expr, numbins, low, high) `__ for a fixed number of bins in a given range (regularly spaced, dense binning)
* `intbin(expr, min, max) `__ for integer-valued bins between min and max, inclusive (same as above, but for integers)
* `split(expr, edges) `__ for a fixed number of bins between a set of given edges (irregularly spaced, dense binning)
* `cut(expr) `__ to divide the data into entries that pass or fail a boolean predicate (two bins)
* `profile(expr) `__ to collect the mean and error in the mean of a dependent variable (not binned)

Profile plots
-------------

We can profile "``y``" and "``z``" or as many distributions as we want in a single `Hist `__ object.

.. code-block:: python

>>> x = numpy.random.normal(0, 1, 10000)
>>> y = x**2 + numpy.random.normal(0, 5, 10000)
>>> z = -x**3 + numpy.random.normal(0, 5, 10000)

>>> h = Hist(bin("x", 100, -5, 5), profile("y"), profile("z"))
>>> h.fill(x=x, y=y, z=z)
>>> beside(h.marker("x", "y"), h.marker("x", "z")).to(canvas)

.. image:: docs/source/intro-12.png

.. code-block:: python

>>> h.select("-1 <= x < 1").pandas("y", "z")

.. code-block::

count() err(count()) y err(y) z err(z)
x
[-1.0, -0.9) 243.0 15.588457 1.104575 0.319523 1.135648 0.301416
[-0.9, -0.8) 275.0 16.583124 0.775029 0.312829 0.485808 0.302074
[-0.8, -0.7) 317.0 17.804494 0.505641 0.300481 0.427452 0.274324
[-0.7, -0.6) 315.0 17.748239 0.358800 0.268928 0.823575 0.288089
[-0.6, -0.5) 351.0 18.734994 0.691492 0.262019 -0.081257 0.265111
[-0.5, -0.4) 359.0 18.947295 0.116491 0.263602 0.171423 0.273736
[-0.4, -0.3) 359.0 18.947295 0.349983 0.256635 -0.107522 0.262714
[-0.3, -0.2) 392.0 19.798990 0.060286 0.257601 0.203810 0.252574
[-0.2, -0.1) 369.0 19.209373 0.207661 0.246779 0.355550 0.268741
[-0.1, 0.0) 388.0 19.697716 0.111659 0.258635 0.223001 0.265828
[0.0, 0.1) 382.0 19.544820 0.348179 0.243986 0.292852 0.249558
[0.1, 0.2) 378.0 19.442222 0.332284 0.273607 -0.277728 0.248078
[0.2, 0.3) 401.0 20.024984 0.100446 0.241673 -0.052257 0.258555
[0.3, 0.4) 386.0 19.646883 0.356500 0.246703 -0.014357 0.251480
[0.4, 0.5) 369.0 19.209373 0.421627 0.258498 -0.073345 0.261555
[0.5, 0.6) 355.0 18.841444 -0.060199 0.259124 -0.383521 0.255889
[0.6, 0.7) 335.0 18.303005 0.560394 0.272651 -0.239575 0.287837
[0.7, 0.8) 298.0 17.262677 0.499264 0.264333 -0.453906 0.282144
[0.8, 0.9) 291.0 17.058722 1.449089 0.293750 -0.920633 0.306683
[0.9, 1.0) 267.0 16.340135 1.085551 0.287038 -1.120942 0.304403

Although each non-profile axis multiplies the number of bins and therefore its memory use, profiles merely add to the number of bins. In fact, they share some statistics, making it 33% (unweighted) to 50% (weighted) more efficient to combine profiles with the same binning. Perhaps more importantly, it's an organizational aid.

Weighted data
-------------

In addition to bins, `Hist `__ takes a ``weight`` parameter to compute weights for each input value. A value with weight 2 is roughly equivalent to having two values with all other attributes being equal (for counts, sums, and means, but not standard deviations). Weights may be zero or even negative.

For example: without weights, counts are integers and the effective counts (used for weighted profiles) are equal to the counts.

.. code-block:: python

>>> x = numpy.random.normal(0, 1, 10000)
>>> y = x**2 + numpy.random.normal(0, 5, 10000)

>>> h = Hist(bin("x", 100, -5, 5), profile("y"))
>>> h.fill(x=x, y=y)
>>> h.select("-0.5 <= x < 0.5").pandas("y", effcount=True)

.. code-block::

count() err(count()) effcount() y err(y)
x
[-0.5, -0.4) 381.0 19.519221 381.0 0.124497 0.251414
[-0.4, -0.3) 388.0 19.697716 388.0 0.215915 0.241851
[-0.3, -0.2) 376.0 19.390719 376.0 -0.029105 0.252925
[-0.2, -0.1) 410.0 20.248457 410.0 -0.128061 0.249327
[-0.1, 0.0) 392.0 19.798990 392.0 0.199057 0.250275
[0.0, 0.1) 398.0 19.949937 398.0 -0.081793 0.242204
[0.1, 0.2) 401.0 20.024984 401.0 -0.144345 0.258108
[0.2, 0.3) 397.0 19.924859 397.0 0.083175 0.251312
[0.3, 0.4) 381.0 19.519221 381.0 0.065216 0.248393
[0.4, 0.5) 341.0 18.466185 341.0 0.349919 0.267243

Below, we make the weights normal-distributed with a mean of 1 and a standard deviation of 4 (many of them are negative, but the average is 1). The counts are no longer integers, errors in the count are much larger, effective counts much smaller, and it affects the profile central values and errors.

.. code-block:: python

>>> h = Hist(bin("x", 100, -5, 5), profile("y"), weight="w")
>>> h.fill(x=x, y=y, w=numpy.random.normal(1, 4, 10000))
>>> h.select("-0.5 <= x < 0.5").pandas("y", effcount=True)

.. code-block::

count() err(count()) effcount() y err(y)
x
[-0.5, -0.4) 310.641444 83.340859 13.893218 -0.405683 1.690065
[-0.4, -0.3) 425.941704 84.217430 25.579754 0.184349 0.836336
[-0.3, -0.2) 375.066116 82.471825 20.682568 -0.608185 1.064126
[-0.2, -0.1) 382.807263 82.146862 21.715927 -1.597008 1.126224
[-0.1, 0.0) 286.163241 87.789195 10.625407 0.713485 1.790242
[0.0, 0.1) 390.969763 83.196893 22.083714 0.068378 1.082724
[0.1, 0.2) 307.430278 84.485770 13.241163 0.444630 1.355545
[0.2, 0.3) 366.041800 81.623699 20.110776 0.085841 1.464471
[0.3, 0.4) 342.713428 74.441222 21.195090 -0.193052 0.993808
[0.4, 0.5) 444.800092 77.272327 33.134601 0.011396 0.839200

Books of histograms
-------------------

A histogram `Book `__ acts like a Python dictionary, mapping string names to `Hist `__ objects. It provides the convenience of having only one object to `fill `__ (important in a complicated parallelization scheme), but also optimizes the calculation of those histograms to avoid unnecessary passes over the data.

.. code-block:: python

>>> book = Book()
>>> for w in 0.1, 0.5, 0.9:
... book["w %g" % w] = Hist(bin("w*left + (1-w)*right", 100, -5, 5), defs={"w": w})

>>> left = numpy.random.normal(-1, 1, 1000000)
>>> right = numpy.random.normal(1, 1, 1000000)
>>> book.fill(left=left, right=right) # one "fill" for all histograms

>>> overlay(book["w 0.1"].step(),
... book["w 0.5"].step(),
... book["w 0.9"].step()).to(canvas)

.. image:: docs/source/intro-13.png

In the above, we created three similar histograms, differing only in how to weight two subexpressions. The use of ``defs`` for substituting constants (or any expression) makes it easier to generate many histograms in a loop.

Note that the number of bins (memory use) scales as

.. pull-quote::

(B :sub:`1` × ... × B :sub:`n` × (P :sub:`1` + ... + P :sub:`m`)) :sub:`1` + ... + (B :sub:`1` × ... × B :sub:`n` × (P :sub:`1` + ... + P :sub:`m`)) :sub:`k`

where B :sub:`i` is the number of bins in non-profile axis i, P :sub:`i` is the number of bins in profile axis i, and the whole expression is repeated for each histogram k in a book. That is, books add memory use, non-profile axes multiply, and profile axes add within the non-profile axes.

Manipulation methods
--------------------

`select `__
""""""

Select a set of bins with a boolean ``expr``, returning a new `Hist `__. Cut boundaries may be approximate (within ``tolerance``), but the inequalities must be exact.

For example, if the low edge of each bin is closed, attempting to cut above it without including it is an error, as is attempting to cut below it with including it:

.. code-block:: python

>>> h = Hist(bin("x", 100, -5, 5, closedlow=True))
>>> h.select("x <= 0")

.. code-block::

Traceback (most recent call last):
File "", line 1, in
File "histbook/proj.py", line 230, in select
return self._select(expr, tolerance)
File "histbook/proj.py", line 328, in _select
raise ValueError("no axis can select {0} (axis {1} has the wrong inequality; low edges are {2})"
.format(repr(str(expr)), wrongcmpaxis, "closed" if wrongcmpaxis.closedlow else
"open"))
ValueError: no axis can select 'x <= 0' (axis bin('x', 100, -5.0, 5.0) has the wrong inequality;
low edges are closed)

whereas

.. code-block:: python

>>> h.select("x < 0")
Hist(bin('x', 50, -5.0, 0.0, overflow=False, nanflow=False))

Any selection other than "``x == nan``" eliminates the nanflow because every comparison with "not a number" should yield ``False``. (So technically, "``x == nan``" shouldn't work— this deviation from strict IEEE behavior is for convenience.)

Selections can never select a partial bin, so filling a histogram and then selecting from it should yield exactly the same result as filtering the data before filling.

Categorical `groupby `__ axes can be selected with Python's ``in`` operator and constant sets (necessary because there are no comparators for categorical data other than ``==``, ``!=``, and ``in``).

.. code-block:: python

>>> h = Hist(groupby("c"))
>>> h.fill(c=["one", "two", "two", "three", "three", "three"])
>>> h.pandas()

.. code-block::

count() err(count())
c
one 1.0 1.000000
three 3.0 1.732051
two 2.0 1.414214

.. code-block:: python

>>> h.select("c in {'one', 'two'}").pandas()

.. code-block::

count() err(count())
c
one 1.0 1.000000
two 2.0 1.414214

`project `__
"""""""

Reduces the number of non-profile axes to the provided set, ``*axis``, by summing over all other non-profile axes.

All internal data are sums that are properly combined by summing. For instance, histograms are represented by a count (unweighted) or a sum of weights and squared-weights (weighted), and profiles are represented by a sum of the quantity times weight and a sum of the squared-quantity times weight.

`drop `__
""""

Eliminates all profile axes except the provided set, ``*profile``.

If a `Hist `__ were represented as a table, non-profile axes form a compound key but profile axes are simple columns, which may be dropped without affecting any other data.

`rebin, rebinby `__
""""""""""""""

Eliminates or sums neighboring bins to reduce the number of bins in an axis to ``edges`` or by a multiplicative ``factor``.

A `Hist `__ with detailed binning in two dimensions can be plotted against one axis with rebinned overlays in the other axis and vice-versa.

Combining histograms
--------------------

Separately filled histograms (`Hist `__ or `Book `__) that represent the same data can be combined by adding them with the ``+`` operator. This simply adds all bins (like ROOT's hadd).

However, you may also want to combine qualitatively different data while maintaining their distinction as a new categorical axis. A common reason for this is to make a stacked plot of different distributions, such as different Monte Carlo samples in physics. For this, you use the `Hist.group `__ or `Book.group `__ static methods.

For example, suppose that we have two histograms filled with different data:

.. code-block:: python

>>> h1 = Hist(bin("x", 10, -5, 5))
>>> h2 = Hist(bin("x", 10, -5, 5))
>>> h1.fill(x=numpy.random.normal(-2.5, 1, 1000000))
>>> h2.fill(x=numpy.random.normal(2.5, 1, 1000000))

Adding them mixes data into the same bins, after which they are no longer seperable.

.. code-block:: python

>>> (h1 + h2).pandas()

.. code-block::

count() err(count())
x
[-inf, -5.0) 6228.0 78.917679
[-5.0, -4.0) 60582.0 246.134110
[-4.0, -3.0) 241904.0 491.837371
[-3.0, -2.0) 383531.0 619.298797
[-2.0, -1.0) 241015.0 490.932786
[-1.0, 0.0) 66541.0 257.955423
[0.0, 1.0) 66982.0 258.808810
[1.0, 2.0) 240963.0 490.879822
[2.0, 3.0) 383046.0 618.907101
[3.0, 4.0) 242198.0 492.136160
[4.0, 5.0) 60726.0 246.426460
[5.0, inf) 6284.0 79.271685
{NaN} 0.0 0.000000

But grouping them creates a new categorical axis, "``source``" by default, where each distribution is associated with an assigned categorical value.

.. code-block:: python

>>> h = Hist.group(a=h1, b=h2)
>>> h.pandas()

.. code-block::

count() err(count())
source x
a [-inf, -5.0) 6228.0 78.917679
[-5.0, -4.0) 60582.0 246.134110
[-4.0, -3.0) 241904.0 491.837371
[-3.0, -2.0) 383528.0 619.296375
[-2.0, -1.0) 240761.0 490.674026
[-1.0, 0.0) 60570.0 246.109732
[0.0, 1.0) 6187.0 78.657485
[1.0, 2.0) 236.0 15.362291
[2.0, 3.0) 4.0 2.000000
[3.0, 4.0) 0.0 0.000000
[4.0, 5.0) 0.0 0.000000
[5.0, inf) 0.0 0.000000
{NaN} 0.0 0.000000
b [-inf, -5.0) 0.0 0.000000
[-5.0, -4.0) 0.0 0.000000
[-4.0, -3.0) 0.0 0.000000
[-3.0, -2.0) 3.0 1.732051
[-2.0, -1.0) 254.0 15.937377
[-1.0, 0.0) 5971.0 77.272246
[0.0, 1.0) 60795.0 246.566421
[1.0, 2.0) 240727.0 490.639379
[2.0, 3.0) 383042.0 618.903870
[3.0, 4.0) 242198.0 492.136160
[4.0, 5.0) 60726.0 246.426460
[5.0, inf) 6284.0 79.271685
{NaN} 0.0 0.000000

.. code-block:: python

>>> beside(h.area("x"), h.stack("source").area("x")).to(canvas)

.. image:: docs/source/intro-14.png

For both types of combination, all axes of the `Hist `__ or all histograms in the `Book `__ must be identical.

Tabular output
--------------

`table `__
"""""

Presents data from the histogram as a Numpy array,

`fraction `__
""""""""

Presents cut fractions (cut efficiencies) as a function of non-profile axes for each ``cut``.

`pandas `__
""""""

Presents a `Hist.table `__ as a Pandas DataFrame if all ``*axis`` are profiles or `Hist.fraction `__ if all ``*axis`` are cuts.

Plotting methods
----------------

An n-dimensional histogram is plotted by spreading its bins across the horizontal axis, across overlaid curves, across a cumulative stack, or across horizontal or vertical side-by-side plots. Any dimensions not spread across a graphical channel are summed, so these plots are a kind of projection. A typical use is to `select `__ and `rebin `__ first, spread zero or more axes across overlays or trellis (side-by-side) channels, then spread the last axis across horizontal bins.

The syntax for these operations is fluent: histogram-dot-operation-dot-operation-dot-plot. A chain of selection/rebinning/plotting operations ends with `.vegalite() `__ (for a Vega-Lite JSON object) or `.to(canvas) `__ (where ``canvas`` is a callable that draws the Vega-Lite). Chainable plotting operations are:

* `overlay(axis) `__ to spread the bins of ``axis`` across overlaid curves
* `stack(axis, order=None) `__ to stack them cumulatively with an optional ``order`` (can only be used if `area `__ is the terminal operation in the chain)
* `beside(axis) `__ to spread the bins of ``axis`` across horizontally arranged plots
* `below(axis) `__ to spread the bins of ``axis`` across vertically arranged plots

The following plotting operations are terminal: they must be last in a chain.

* `bar(axis=None, profile=None, error=False) `__ to draw bar plots (``axis`` must be specified if the histogram has more than one; ``profile`` to draw a dependent variable instead of counts; and ``error`` to overlay error bars)
* `step(axis=None, profile=None, error=False) `__ to draw step-wise histograms
* `area(axis=None, profile=None, error=False) `__ to draw filled areas (only terminal operation that can be used with a `stack `__)
* `line(axis=None, profile=None, error=False) `__ to draw connected lines
* `marker(axis=None, profile=None, error=True) `__ to draw points (note: by default, ``error=True``)

In addition, terminated plotting chains can be combined with the following operations. The output of these functions can be plotted with `.vegalite() `__ (for a Vega-Lite JSON object) or `.to(canvas) `__.

* `overlay(*plotables) `__ to overlay plots
* `beside(*plotables) `__ to arrange plots horizontally
* `below(*plotables) `__ to arrange plots vertically

Exporting to ROOT
-----------------

`Hist.root(*axis) `__

Returns a PyROOT histogram projected on ``*axis``. The type (``TH1``, ``TH2``, ``TProfile``, ...) depends on the `Hist `__.

.. inclusion-marker-4-do-not-remove

.. inclusion-marker-5-do-not-remove