Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/scikit-learn/scikit-learn
scikit-learn: machine learning in Python
https://github.com/scikit-learn/scikit-learn
data-analysis data-science machine-learning python statistics
Last synced: 1 day ago
JSON representation
scikit-learn: machine learning in Python
- Host: GitHub
- URL: https://github.com/scikit-learn/scikit-learn
- Owner: scikit-learn
- License: bsd-3-clause
- Created: 2010-08-17T09:43:38.000Z (over 14 years ago)
- Default Branch: main
- Last Pushed: 2025-01-09T11:24:45.000Z (5 days ago)
- Last Synced: 2025-01-09T12:38:35.738Z (5 days ago)
- Topics: data-analysis, data-science, machine-learning, python, statistics
- Language: Python
- Homepage: https://scikit-learn.org
- Size: 158 MB
- Stars: 60,689
- Watchers: 2,145
- Forks: 25,494
- Open Issues: 2,113
-
Metadata Files:
- Readme: README.rst
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: COPYING
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
- my-awesome-starred - scikit-learn - scikit-learn: machine learning in Python (Python)
- my-awesome-awesomeness - scikit-learn - learn: machine learning in Python. (Uncategorized / Uncategorized)
- awesome - scikit-learn - scikit-learn: machine learning in Python (Python)
- awesome - scikit-learn - scikit-learn: machine learning in Python (Python)
- awesome-systematic-trading - Scikit-learn - learn/scikit-learn) | ![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg) | (Data Science / Cryptocurrencies)
- awesome-systematic-trading - Sikit-learn - commit/scikit-learn/scikit-learn/main) ![GitHub Repo stars](https://img.shields.io/github/stars/scikit-learn/scikit-learn?style=social) | Python, Cython | - Machine learning in Python (Basic Components / Fundamental libraries)
- awesome-data-science-viz - Scikit Learn
- awesome-python-machine-learning-resources - GitHub - 16% open · ⏱️ 26.08.2022): (机器学习框架)
- awesome-llmops - scikit-learn - learn/scikit-learn.svg?style=flat-square) | (Training / Frameworks for Training)
- awesome_quantmetry - scikit-learn
- awesome-llm-eval - scikit-learn - learn/scikit-learn.svg?style=social) - Machine Learning in Python. (Frameworks-for-Training / Popular-LLM)
- awesome-starred - scikit-learn - scikit-learn: machine learning in Python (Python)
- awesome-python-machine-learning - Scikit-Learn - A general purpose ML library. Most common algorithms and metrics implemented. (Uncategorized / Uncategorized)
- awesome-starts - scikit-learn/scikit-learn - scikit-learn: machine learning in Python (Python)
- awesome-topic-models - scikit-learn - Python library for machine learning ![GitHub Repo stars](https://img.shields.io/github/stars/scikit-learn/scikit-learn?style=social) (Libraries & Toolkits)
- awesome-for-beginners - scikit-learn - learn is a machine learning library for Python. (Python)
- awesome-list - scikit-learn - Machine learning toolkit for Python. (Machine Learning Framework / General Purpose Framework)
- awesome-machine-learning-resources - **[Library - learn/scikit-learn?style=social) (Table of Contents)
- awesome-ML-NLP - scikit-learn - Python module for machine learning built on top of SciPy (Libraries, Softwares)
- awesome-text-ml - sklearn - Scikit-learn is a Python module for machine learning built on top of SciPy, including tools for text vectorization and vector space compression. https://scikit-learn.org/stable/ (Frameworks and libraries / :snake: Python)
- awesome-production-machine-learning - scikit-learn - learn/scikit-learn.svg?style=social) - Scikit-learn is a powerful machine learning library that provides a wide variety of modules for data access, data preparation and statistical model building. (Optimized Computation)
- fucking-awesome-for-beginners - scikit-learn - learn is a machine learning library for Python. (Python)
- stars - scikit-learn/scikit-learn - scikit-learn: machine learning in Python (Python)
- stars - scikit-learn/scikit-learn - scikit-learn: machine learning in Python (Python)
- awesome-engineering - Scikit-learn - learn.org/stable/) Machine learning library for Python (Awesome Tools / Languages)
- awesome-engineering - Scikit-learn - learn.org/stable/) Machine learning library for Python (Awesome Tools / Languages)
- pytrade.org - scikit-learn - scikit-learn: machine learning in Python (Curated List / Machine Learning Tools)
- AiTreasureBox - scikit-learn/scikit-learn - 01-13_60752_9](https://img.shields.io/github/stars/scikit-learn/scikit-learn.svg)|scikit-learn: machine learning in Python| (Repos)
README
.. -*- mode: rst -*-
|Azure| |CirrusCI| |Codecov| |CircleCI| |Nightly wheels| |Black| |PythonVersion| |PyPi| |DOI| |Benchmark|
.. |Azure| image:: https://dev.azure.com/scikit-learn/scikit-learn/_apis/build/status/scikit-learn.scikit-learn?branchName=main
:target: https://dev.azure.com/scikit-learn/scikit-learn/_build/latest?definitionId=1&branchName=main.. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/main.svg?style=shield
:target: https://circleci.com/gh/scikit-learn/scikit-learn.. |CirrusCI| image:: https://img.shields.io/cirrus/github/scikit-learn/scikit-learn/main?label=Cirrus%20CI
:target: https://cirrus-ci.com/github/scikit-learn/scikit-learn/main.. |Codecov| image:: https://codecov.io/gh/scikit-learn/scikit-learn/branch/main/graph/badge.svg?token=Pk8G9gg3y9
:target: https://codecov.io/gh/scikit-learn/scikit-learn.. |Nightly wheels| image:: https://github.com/scikit-learn/scikit-learn/workflows/Wheel%20builder/badge.svg?event=schedule
:target: https://github.com/scikit-learn/scikit-learn/actions?query=workflow%3A%22Wheel+builder%22+event%3Aschedule.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/scikit-learn.svg
:target: https://pypi.org/project/scikit-learn/.. |PyPi| image:: https://img.shields.io/pypi/v/scikit-learn
:target: https://pypi.org/project/scikit-learn.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black.. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg
:target: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn.. |Benchmark| image:: https://img.shields.io/badge/Benchmarked%20by-asv-blue
:target: https://scikit-learn.org/scikit-learn-benchmarks.. |PythonMinVersion| replace:: 3.9
.. |NumPyMinVersion| replace:: 1.19.5
.. |SciPyMinVersion| replace:: 1.6.0
.. |JoblibMinVersion| replace:: 1.2.0
.. |ThreadpoolctlMinVersion| replace:: 3.1.0
.. |MatplotlibMinVersion| replace:: 3.3.4
.. |Scikit-ImageMinVersion| replace:: 0.17.2
.. |PandasMinVersion| replace:: 1.2.0
.. |SeabornMinVersion| replace:: 0.9.0
.. |PytestMinVersion| replace:: 7.1.2
.. |PlotlyMinVersion| replace:: 5.14.0.. image:: https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png
:target: https://scikit-learn.org/**scikit-learn** is a Python module for machine learning built on top of
SciPy and is distributed under the 3-Clause BSD license.The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the `About us `__ page
for a list of core contributors.It is currently maintained by a team of volunteers.
Website: https://scikit-learn.org
Installation
------------Dependencies
~~~~~~~~~~~~scikit-learn requires:
- Python (>= |PythonMinVersion|)
- NumPy (>= |NumPyMinVersion|)
- SciPy (>= |SciPyMinVersion|)
- joblib (>= |JoblibMinVersion|)
- threadpoolctl (>= |ThreadpoolctlMinVersion|)=======
**Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4.**
scikit-learn 1.0 and later require Python 3.7 or newer.
scikit-learn 1.1 and later require Python 3.8 or newer.Scikit-learn plotting capabilities (i.e., functions start with ``plot_`` and
classes end with ``Display``) require Matplotlib (>= |MatplotlibMinVersion|).
For running the examples Matplotlib >= |MatplotlibMinVersion| is required.
A few examples require scikit-image >= |Scikit-ImageMinVersion|, a few examples
require pandas >= |PandasMinVersion|, some examples require seaborn >=
|SeabornMinVersion| and plotly >= |PlotlyMinVersion|.User installation
~~~~~~~~~~~~~~~~~If you already have a working installation of NumPy and SciPy,
the easiest way to install scikit-learn is using ``pip``::pip install -U scikit-learn
or ``conda``::
conda install -c conda-forge scikit-learn
The documentation includes more detailed `installation instructions `_.
Changelog
---------See the `changelog `__
for a history of notable changes to scikit-learn.Development
-----------We welcome new contributors of all experience levels. The scikit-learn
community goals are to be helpful, welcoming, and effective. The
`Development Guide `_
has detailed information about contributing code, documentation, tests, and
more. We've included some basic information in this README.Important links
~~~~~~~~~~~~~~~- Official source code repo: https://github.com/scikit-learn/scikit-learn
- Download releases: https://pypi.org/project/scikit-learn/
- Issue tracker: https://github.com/scikit-learn/scikit-learn/issuesSource code
~~~~~~~~~~~You can check the latest sources with the command::
git clone https://github.com/scikit-learn/scikit-learn.git
Contributing
~~~~~~~~~~~~To learn more about making a contribution to scikit-learn, please see our
`Contributing guide
`_.Testing
~~~~~~~After installation, you can launch the test suite from outside the source
directory (you will need to have ``pytest`` >= |PyTestMinVersion| installed)::pytest sklearn
See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage
for more information.Random number generation can be controlled during testing by setting
the ``SKLEARN_SEED`` environment variable.Submitting a Pull Request
~~~~~~~~~~~~~~~~~~~~~~~~~Before opening a Pull Request, have a look at the
full Contributing page to make sure your code complies
with our guidelines: https://scikit-learn.org/stable/developers/index.htmlProject History
---------------The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the `About us `__ page
for a list of core contributors.The project is currently maintained by a team of volunteers.
**Note**: `scikit-learn` was previously referred to as `scikits.learn`.
Help and Support
----------------Documentation
~~~~~~~~~~~~~- HTML documentation (stable release): https://scikit-learn.org
- HTML documentation (development version): https://scikit-learn.org/dev/
- FAQ: https://scikit-learn.org/stable/faq.htmlCommunication
~~~~~~~~~~~~~- Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
- Logos & Branding: https://github.com/scikit-learn/scikit-learn/tree/main/doc/logos
- Blog: https://blog.scikit-learn.org
- Calendar: https://blog.scikit-learn.org/calendar/
- Twitter: https://twitter.com/scikit_learn
- Stack Overflow: https://stackoverflow.com/questions/tagged/scikit-learn
- GitHub Discussions: https://github.com/scikit-learn/scikit-learn/discussions
- Website: https://scikit-learn.org
- LinkedIn: https://www.linkedin.com/company/scikit-learn
- Bluesky: https://bsky.app/profile/scikit-learn.org
- YouTube: https://www.youtube.com/channel/UCJosFjYm0ZYVUARxuOZqnnw/playlists
- Facebook: https://www.facebook.com/scikitlearnofficial/
- Instagram: https://www.instagram.com/scikitlearnofficial/
- TikTok: https://www.tiktok.com/@scikit.learn
- Mastodon: https://mastodon.social/@[email protected]
- Discord: https://discord.gg/h9qyrK8Jc8Citation
~~~~~~~~If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn