Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/scikit-learn-contrib/mapie
A scikit-learn-compatible module to estimate prediction intervals and control risks based on conformal predictions.
https://github.com/scikit-learn-contrib/mapie
classification confidence-intervals conformal-prediction data-science python regression sklearn
Last synced: 6 days ago
JSON representation
A scikit-learn-compatible module to estimate prediction intervals and control risks based on conformal predictions.
- Host: GitHub
- URL: https://github.com/scikit-learn-contrib/mapie
- Owner: scikit-learn-contrib
- License: bsd-3-clause
- Created: 2021-03-30T08:47:08.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-10-23T15:14:21.000Z (2 months ago)
- Last Synced: 2024-10-29T14:50:21.571Z (about 2 months ago)
- Topics: classification, confidence-intervals, conformal-prediction, data-science, python, regression, sklearn
- Language: Jupyter Notebook
- Homepage: https://mapie.readthedocs.io/en/latest/
- Size: 101 MB
- Stars: 1,289
- Watchers: 16
- Forks: 110
- Open Issues: 49
-
Metadata Files:
- Readme: README.rst
- Changelog: HISTORY.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Authors: AUTHORS.rst
Awesome Lists containing this project
README
.. -*- mode: rst -*-
|GitHubActions| |Codecov| |ReadTheDocs| |License| |PythonVersion| |PyPi| |Conda| |Release| |Commits| |DOI|
.. |GitHubActions| image:: https://github.com/scikit-learn-contrib/MAPIE/actions/workflows/test.yml/badge.svg
:target: https://github.com/scikit-learn-contrib/MAPIE/actions.. |Codecov| image:: https://codecov.io/gh/scikit-learn-contrib/MAPIE/branch/master/graph/badge.svg?token=F2S6KYH4V1
:target: https://codecov.io/gh/scikit-learn-contrib/MAPIE.. |ReadTheDocs| image:: https://readthedocs.org/projects/mapie/badge/?version=stable
:target: https://mapie.readthedocs.io/en/stable/?badge=stable
:alt: Documentation Status.. |License| image:: https://img.shields.io/github/license/scikit-learn-contrib/MAPIE
:target: https://github.com/scikit-learn-contrib/MAPIE/blob/master/LICENSE.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/mapie
:target: https://pypi.org/project/mapie/.. |PyPi| image:: https://img.shields.io/pypi/v/mapie
:target: https://pypi.org/project/mapie/.. |Conda| image:: https://img.shields.io/conda/vn/conda-forge/mapie
:target: https://anaconda.org/conda-forge/mapie.. |Release| image:: https://img.shields.io/github/v/release/scikit-learn-contrib/mapie
:target: https://github.com/scikit-learn-contrib/MAPIE/releases.. |Commits| image:: https://img.shields.io/github/commits-since/scikit-learn-contrib/mapie/latest/master
:target: https://github.com/scikit-learn-contrib/MAPIE/commits/master.. |DOI| image:: https://img.shields.io/badge/10.48550/arXiv.2207.12274-B31B1B.svg
:target: https://arxiv.org/abs/2207.12274.. image:: https://github.com/scikit-learn-contrib/MAPIE/raw/master/doc/images/mapie_logo_nobg_cut.png
:width: 400
:align: centerMAPIE - Model Agnostic Prediction Interval Estimator
====================================================**MAPIE** is an open-source Python library for quantifying uncertainties and controlling the risks of machine learning models.
It is a scikit-learn-contrib project that allows you to:- Easily **compute conformal prediction intervals** (or prediction sets) with controlled (or guaranteed) marginal coverage rate
for regression [3,4,8], classification (binary and multi-class) [5-7] and time series [9].
- Easily **control risks** of more complex tasks such as multi-label classification,
semantic segmentation in computer vision (probabilistic guarantees on recall, precision, ...) [10-12].
- Easily **wrap any model (scikit-learn, tensorflow, pytorch, ...) with, if needed, a scikit-learn-compatible wrapper**
for the purposes just mentioned.Here's a quick instantiation of MAPIE models for regression and classification problems related to uncertainty quantification
(more details in the Quickstart section):.. code:: python
# Uncertainty quantification for regression problem
from mapie.regression import MapieRegressor
mapie_regressor = MapieRegressor(estimator=regressor, method='plus', cv=5).. code:: python
# Uncertainty quantification for classification problem
from mapie.classification import MapieClassifier
mapie_classifier = MapieClassifier(estimator=classifier, method='score', cv=5)Implemented methods in **MAPIE** respect three fundamental pillars:
- They are **model and use case agnostic**,
- They possess **theoretical guarantees** under minimal assumptions on the data and the model,
- They are based on **peer-reviewed algorithms** and respect programming standards.**MAPIE** relies notably on the field of *Conformal Prediction* and *Distribution-Free Inference*.
🔗 Requirements
===============- **MAPIE** runs on Python 3.7+.
- **MAPIE** stands on the shoulders of giants. Its only internal dependencies are `scikit-learn `_ and `numpy=>1.21 `_.🛠 Installation
===============**MAPIE** can be installed in different ways:
.. code:: sh
$ pip install mapie # installation via `pip`
$ conda install -c conda-forge mapie # or via `conda`
$ pip install git+https://github.com/scikit-learn-contrib/MAPIE # or directly from the github repository⚡ Quickstart
=============Here we propose two basic uncertainty quantification problems for regression and classification tasks with scikit-learn.
As **MAPIE** is compatible with the standard scikit-learn API, you can see that with just these few lines of code:
- How easy it is **to wrap your favorite scikit-learn-compatible model** around your model.
- How easy it is **to follow the standard sequential** ``fit`` and ``predict`` process like any scikit-learn estimator... code:: python
# Uncertainty quantification for regression problem
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_splitfrom mapie.regression import MapieRegressor
X, y = make_regression(n_samples=500, n_features=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)regressor = LinearRegression()
mapie_regressor = MapieRegressor(estimator=regressor, method='plus', cv=5)
mapie_regressor = mapie_regressor.fit(X_train, y_train)
y_pred, y_pis = mapie_regressor.predict(X_test, alpha=[0.05, 0.32]).. code:: python
# Uncertainty quantification for classification problem
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_splitfrom mapie.classification import MapieClassifier
X, y = make_blobs(n_samples=500, n_features=2, centers=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)classifier = LogisticRegression()
mapie_classifier = MapieClassifier(estimator=classifier, method='score', cv=5)
mapie_classifier = mapie_classifier.fit(X_train, y_train)
y_pred, y_pis = mapie_classifier.predict(X_test, alpha=[0.05, 0.32])📘 Documentation
================The full documentation can be found `on this link `_.
📝 Contributing
===============You are welcome to propose and contribute new ideas.
We encourage you to `open an issue `_ so that we can align on the work to be done.
It is generally a good idea to have a quick discussion before opening a pull request that is potentially out-of-scope.
For more information on the contribution process, please go `here `_.🤝 Affiliations
================MAPIE has been developed through a collaboration between Capgemini, Quantmetry, Michelin, ENS Paris-Saclay,
and with the financial support from Région Ile de France and Confiance.ai.|Capgemini| |Quantmetry| |Michelin| |ENS| |Confiance.ai| |IledeFrance|
.. |Capgemini| image:: https://www.capgemini.com/wp-content/themes/capgemini2020/assets/images/logo.svg
:height: 35px
:width: 140px
:target: https://www.capgemini.com/.. |Quantmetry| image:: https://www.quantmetry.com/wp-content/uploads/2020/08/08-Logo-quant-Texte-noir.svg
:height: 35px
:width: 140px
:target: https://www.quantmetry.com/.. |Michelin| image:: https://agngnconpm.cloudimg.io/v7/https://dgaddcosprod.blob.core.windows.net/corporate-production/attachments/cls05tqdd9e0o0tkdghwi9m7n-clooe1x0c3k3x0tlu4cxi6dpn-bibendum-salut.full.png
:height: 50px
:width: 45px
:target: https://www.michelin.com/en/.. |ENS| image:: https://www.ens.psl.eu/sites/default/files/logo_ens_psl_en_png.png
:height: 35px
:width: 140px
:target: https://ens-paris-saclay.fr/en/.. |Confiance.ai| image:: https://pbs.twimg.com/profile_images/1443838558549258264/EvWlv1Vq_400x400.jpg
:height: 45px
:width: 45px
:target: https://www.confiance.ai/.. |IledeFrance| image:: https://www.iledefrance.fr/sites/default/files/logo/2024-02/logoGagnerok.svg
:height: 35px
:width: 140px
:target: https://www.iledefrance.fr/🔍 References
==============[1] Vovk, Vladimir, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World. Springer Nature, 2022.
[2] Angelopoulos, Anastasios N., and Stephen Bates. "Conformal prediction: A gentle introduction." Foundations and Trends® in Machine Learning 16.4 (2023): 494-591.
[3] Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. "Predictive inference with the jackknife+." Ann. Statist., 49(1):486–507, (2021).
[4] Kim, Byol, Chen Xu, and Rina Barber. "Predictive inference is free with the jackknife+-after-bootstrap." Advances in Neural Information Processing Systems 33 (2020): 4138-4149.
[5] Sadinle, Mauricio, Jing Lei, and Larry Wasserman. "Least ambiguous set-valued classifiers with bounded error levels." Journal of the American Statistical Association 114.525 (2019): 223-234.
[6] Romano, Yaniv, Matteo Sesia, and Emmanuel Candes. "Classification with valid and adaptive coverage." Advances in Neural Information Processing Systems 33 (2020): 3581-3591.
[7] Angelopoulos, Anastasios, et al. "Uncertainty sets for image classifiers using conformal prediction." International Conference on Learning Representations (2021).
[8] Romano, Yaniv, Evan Patterson, and Emmanuel Candes. "Conformalized quantile regression." Advances in neural information processing systems 32 (2019).
[9] Xu, Chen, and Yao Xie. "Conformal prediction interval for dynamic time-series." International Conference on Machine Learning. PMLR, (2021).
[10] Bates, Stephen, et al. "Distribution-free, risk-controlling prediction sets." Journal of the ACM (JACM) 68.6 (2021): 1-34.
[11] Angelopoulos, Anastasios N., Stephen, Bates, Adam, Fisch, Lihua, Lei, and Tal, Schuster. "Conformal Risk Control." (2022).
[12] Angelopoulos, Anastasios N., Stephen, Bates, Emmanuel J. Candès, et al. "Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control." (2022).
📝 License
==========MAPIE is free and open-source software licensed under the `license `_.
📚 Citation
===========If you use MAPIE in your research, please cite using:
.. code:: latex
@inproceedings{Cordier_Flexible_and_Systematic_2023,
author = {Cordier, Thibault and Blot, Vincent and Lacombe, Louis and Morzadec, Thomas and Capitaine, Arnaud and Brunel, Nicolas},
booktitle = {Conformal and Probabilistic Prediction with Applications},
title = {{Flexible and Systematic Uncertainty Estimation with Conformal Prediction via the MAPIE library}},
year = {2023}
}