Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/scikit-learn-contrib/metric-learn

Metric learning algorithms in Python
https://github.com/scikit-learn-contrib/metric-learn

machine-learning metric-learning python scikit-learn

Last synced: 4 days ago
JSON representation

Metric learning algorithms in Python

Awesome Lists containing this project

README

        

|GitHub Actions Build Status| |License| |PyPI version| |Code coverage|

metric-learn: Metric Learning in Python
=======================================

metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib `_, the API of metric-learn is compatible with `scikit-learn `_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.

**Algorithms**

- Large Margin Nearest Neighbor (LMNN)
- Information Theoretic Metric Learning (ITML)
- Sparse Determinant Metric Learning (SDML)
- Least Squares Metric Learning (LSML)
- Sparse Compositional Metric Learning (SCML)
- Neighborhood Components Analysis (NCA)
- Local Fisher Discriminant Analysis (LFDA)
- Relative Components Analysis (RCA)
- Metric Learning for Kernel Regression (MLKR)
- Mahalanobis Metric for Clustering (MMC)

**Dependencies**

- Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
`v0.5.0 `_)
- numpy>= 1.11.0, scipy>= 0.17.0, scikit-learn>=0.21.3

**Optional dependencies**

- For SDML, using skggm will allow the algorithm to solve problematic cases
(install from commit `a0ed406 `_).
``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
- For running the examples only: matplotlib

**Installation/Setup**

- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here `_.

- To install from PyPI: ``pip install metric-learn``.

- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).

**Usage**

See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.

**Citation**

If you use metric-learn in a scientific publication, we would appreciate
citations to the following paper:

`metric-learn: Metric Learning Algorithms in Python
`_, de Vazelhes
*et al.*, Journal of Machine Learning Research, 21(138):1-6, 2020.

Bibtex entry::

@article{metric-learn,
title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
{Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {138},
pages = {1--6}
}

.. _sphinx documentation: http://contrib.scikit-learn.org/metric-learn/

.. |GitHub Actions Build Status| image:: https://github.com/scikit-learn-contrib/metric-learn/workflows/CI/badge.svg
:target: https://github.com/scikit-learn-contrib/metric-learn/actions?query=event%3Apush+branch%3Amaster
.. |License| image:: http://img.shields.io/:license-mit-blue.svg?style=flat
:target: http://badges.mit-license.org
.. |PyPI version| image:: https://badge.fury.io/py/metric-learn.svg
:target: http://badge.fury.io/py/metric-learn
.. |Code coverage| image:: https://codecov.io/gh/scikit-learn-contrib/metric-learn/branch/master/graph/badge.svg
:target: https://codecov.io/gh/scikit-learn-contrib/metric-learn