Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/scikit-mine/scikit-mine

scikit-mine : pattern mining in Python
https://github.com/scikit-mine/scikit-mine

datamining minimum-description-length pattern-mining scikit scikit-learn

Last synced: about 2 months ago
JSON representation

scikit-mine : pattern mining in Python

Awesome Lists containing this project

README

        

.. image:: https://img.shields.io/pypi/v/scikit-mine.svg
:target: https://pypi.python.org/pypi/scikit-mine/

.. image:: https://codecov.io/gh/remiadon/scikit-mine/branch/master/graph/badge.svg
:target: https://codecov.io/gh/remiadon/scikit-mine

.. image:: https://img.shields.io/badge/powered%20by-INRIA-orange.svg?style=flat&colorA=384257&colorB=E23324
:target: https://www.inria.fr/en

.. image:: https://pepy.tech/badge/scikit-mine
:target: https://pepy.tech/project/scikit-mine

.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/scikit-mine/scikit-mine/HEAD?filepath=docs%2Ftutorials%2Fperiodic%2Fperiodic_canadian_tv.ipynb

Scikit-mine : pattern mining in Python

* **Descriptive analysis**, leading to **interpretable**, concise descriptions using the `Minimum Description Length Principle `_
* **Fast** Algorithms
* **Simple, extendable API**, inspired by scikit-learn_

.. _scikit-learn: https://scikit-learn.org/

Resources
---------

* Free software: BSD license
* GitHub: https://github.com/scikit-mine/scikit-mine
* Documentation: https://scikit-mine.github.io/scikit-mine/

Quickstart
----------

scikit-mine is a Python module for pattern mining built on top of
Pandas/Numpy/SciPy and is distributed under the 3-Clause BSD license.

It is currently maintained by a team of volunteers.

See examples in the tutorials; the notebooks are available here_. To execute the tutorials, you will have to install jupyter notebook or jupyterlab (https://jupyter.org/install)

.. _here: https://github.com/scikit-mine/scikit-mine/tree/master/docs/tutorials

Dependencies
------------

scikit-mine requires Python>=3.8,
and some extra dependencies

* scipy>=1.2.1
* pandas>=1.0.0
* pyroaring>=0.3.4
* joblib>=0.11.1
* sortedcontainers>=2.1.0
* dataclasses>=0.6
* networkx
* wget>=3.2
* scikit-learn
* graphviz
* matplotlib
* pydot

Development
-----------

This project benefitted from fundings from the `INRIA center in Rennes, Brittany, France `_, as well as from the `CNRS PNRIA Programme `_.

We welcome new contributors of all experience levels.

Internal Contributors
---------------------

- Rémi Adon (https://github.com/remiadon)
- Hermann Courteille (https://github.com/hermann74)
- Cyril Regan (https://github.com/cyril-data)
- Thomas Betton (https://github.com/thomasbtnfr)
- Esther Galbrun (https://github.com/nurblageij)
- Peggy Cellier (https://github.com/PeggyCellier)
- Alexandre Termier (https://github.com/alexandre-termier)
- Luis Galárraga (https://github.com/lgalarra)
- Josie Signe (https://github.com/Darlysia)
- Francesco Bariatti (https://github.com/fbariatti)
- Mensah-David Assigbi (https://github.com/davidassigbi)
- Arnauld-Cyriaque Djedjemel (https://github.com/Ariaque)