Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sciml/polychaos.jl
A Julia package to construct orthogonal polynomials, their quadrature rules, and use it with polynomial chaos expansions.
https://github.com/sciml/polychaos.jl
differential-equations julia julia-language orthogonal-polynomials polynomial-chaos-expansions polynomials quadrature quadrature-integration quadrature-rules scientific-machine-learning uncertainty-propagation uncertainty-quantification
Last synced: 7 days ago
JSON representation
A Julia package to construct orthogonal polynomials, their quadrature rules, and use it with polynomial chaos expansions.
- Host: GitHub
- URL: https://github.com/sciml/polychaos.jl
- Owner: SciML
- License: mit
- Created: 2019-01-15T19:14:32.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2024-10-17T14:09:01.000Z (about 1 month ago)
- Last Synced: 2024-11-06T20:33:39.851Z (14 days ago)
- Topics: differential-equations, julia, julia-language, orthogonal-polynomials, polynomial-chaos-expansions, polynomials, quadrature, quadrature-integration, quadrature-rules, scientific-machine-learning, uncertainty-propagation, uncertainty-quantification
- Language: Julia
- Homepage: https://docs.sciml.ai/PolyChaos/stable/
- Size: 4.13 MB
- Stars: 118
- Watchers: 14
- Forks: 26
- Open Issues: 20
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# PolyChaos -- Orthogonal Polynomials, Quadrature, and Polynomial Chaos
[![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged)
[![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/PolyChaos/stable/)[![codecov](https://codecov.io/gh/SciML/PolyChaos.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/PolyChaos.jl)
[![Build Status](https://github.com/SciML/PolyChaos.jl/workflows/CI/badge.svg)](https://github.com/SciML/PolyChaos.jl/actions?query=workflow%3ACI)[![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%27s%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
[![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle)[![Code DOI](https://zenodo.org/badge/165908711.svg)](https://zenodo.org/badge/latestdoi/165908711)
[![Paper@arXiv](https://img.shields.io/badge/arXiv-2004.03970-green.svg)](https://arxiv.org/abs/2004.03970)A Julia package to construct orthogonal polynomials, their quadrature rules, and use it with polynomial chaos expansions.
## Tutorials and Documentation
For information on using the package,
[see the stable documentation](https://docs.sciml.ai/PolyChaos/stable/). Use the
[in-development documentation](https://docs.sciml.ai/PolyChaos/dev/) for the version of
the documentation, which contains the unreleased features.The package requires `Julia 1.3` or newer.
In `Julia` switch to the package manager```julia
using Pkg
Pkg.add("PolyChaos")
```This will install PolyChaos and its dependencies.
Once that is done, load the package:```julia
using PolyChaos
```That's it.
Let's take a look at a simple example.
We would like to solve the integral![equation](https://latex.codecogs.com/gif.latex?%5Cint_0%5E1%206%20x%5E5%20%5Cmathrm%7Bd%7Dx.)
Exploiting the underlying uniform measure, the integration can be done exactly with a 3-point quadrature rule.
```@example mysetup
opq = Uniform01OrthoPoly(3)
integrate(x -> 6x^5, opq)
```For more information please visit the [documentation](https://docs.sciml.ai/PolyChaos/stable).
## Citing
If you like `PolyChaos.jl`, consider citing our paper
```
@ARTICLE{2020arXiv200403970M,
author = {{M{\"u}hlpfordt}, Tillmann and {Zahn}, Frederik and {Hagenmeyer}, Veit and {Faulwasser}, Timm},
title = "{PolyChaos.jl -- A Julia Package for Polynomial Chaos in Systems and Control}",
journal = {arXiv e-prints},
keywords = {Electrical Engineering and Systems Science - Systems and Control, Mathematics - Numerical Analysis, Mathematics - Optimization and Control},
year = 2020,
month = apr,
eid = {arXiv:2004.03970},
pages = {arXiv:2004.03970},
archivePrefix = {arXiv},
eprint = {2004.03970},
primaryClass = {eess.SY},
}
```