Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/scitator/run-skeleton-run

Reason8.ai PyTorch solution for NIPS RL 2017 challenge
https://github.com/scitator/run-skeleton-run

actor-critic ddpg ddpg-agent nips nips-2017 physics-based ppo pytorch pytorch-solution reinforcement-learning tensorflow trpo

Last synced: about 1 month ago
JSON representation

Reason8.ai PyTorch solution for NIPS RL 2017 challenge

Awesome Lists containing this project

README

        

# Run-Skeleton-Run

[Reason8.ai](https://reason8.ai) PyTorch solution for 3rd place [NIPS RL 2017 challenge](https://www.crowdai.org/challenges/nips-2017-learning-to-run/leaderboards?challenge_round_id=12).

[Theano version](https://github.com/fgvbrt/nips_rl)

Additional thanks to [Mikhail Pavlov](https://github.com/fgvbrt) for collaboration.

## Agent policies

### no-flip-state-action

![alt text](https://github.com/Scitator/Run-Skeleton-Run/blob/master/gifs/noflip.gif)

### flip-state-action

![alt text](https://github.com/Scitator/Run-Skeleton-Run/blob/master/gifs/flip.gif)

## How to setup environment?

1. `sh setup_conda.sh`
2. `source activate opensim-rl`

Would like to test baselines? (Need MPI support)

3. `sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev`
3+. `sh setup_env_mpi.sh`

OR like DDPG agents?
3. `sh setup_env.sh`

4. Congrats! Now you are ready to check our agents.

## Run DDPG agent

```
CUDA_VISIBLE_DEVICES="" PYTHONPATH=. python ddpg/train.py \
--logdir ./logs_ddpg \
--num-threads 4 \
--ddpg-wrapper \
--skip-frames 5 \
--fail-reward -0.2 \
--reward-scale 10 \
--flip-state-action \
--actor-layers 64-64 --actor-layer-norm --actor-parameters-noise \
--actor-lr 0.001 --actor-lr-end 0.00001 \
--critic-layers 64-32 --critic-layer-norm \
--critic-lr 0.002 --critic-lr-end 0.00001 \
--initial-epsilon 0.5 --final-epsilon 0.001 \
--tau 0.0001
```

## Evaluate DDPG agent

```
CUDA_VISIBLE_DEVICES="" PYTHONPATH=./ python ddpg/submit.py \
--restore-actor-from ./logs_ddpg/actor_state_dict.pkl \
--restore-critic-from ./logs_ddpg/critic_state_dict.pkl \
--restore-args-from ./logs_ddpg/args.json \
--num-episodes 10

```

## Run TRPO/PPO agent

```
CUDA_VISIBLE_DEVICES="" PYTHONPATH=. python ddpg/train.py \
--agent ppo \
--logdir ./logs_baseline \
--baseline-wrapper \
--skip-frames 5 \
--fail-reward -0.2 \
--reward-scale 10
```

## Citation
Please cite the following paper if you feel this repository useful.
```
@article{run_skeleton,
title={Run, skeleton, run: skeletal model in a physics-based simulation},
author = {Mikhail Pavlov, Sergey Kolesnikov and Sergey M.~Plis},
journal={AAAI Spring Symposium Series},
year={2018}
}
```