Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sdpython/mlprodict

Productionize machine learning predictions, with ONNX or without
https://github.com/sdpython/mlprodict

machine-learning onnx python3 scikit-learn

Last synced: 3 months ago
JSON representation

Productionize machine learning predictions, with ONNX or without

Awesome Lists containing this project

README

        

.. image:: https://github.com/sdpython/mlprodict/blob/master/_doc/sphinxdoc/source/_static/project_ico.png?raw=true
:target: https://github.com/sdpython/mlprodict/

.. _l-README:

mlprodict
=========

.. image:: https://travis-ci.com/sdpython/mlprodict.svg?branch=master
:target: https://app.travis-ci.com/github/sdpython/mlprodict/
:alt: Build status

.. image:: https://ci.appveyor.com/api/projects/status/g8chk1ufyk1m8uep?svg=true
:target: https://ci.appveyor.com/project/sdpython/mlprodict
:alt: Build Status Windows

.. image:: https://circleci.com/gh/sdpython/mlprodict/tree/master.svg?style=svg
:target: https://circleci.com/gh/sdpython/mlprodict/tree/master

.. image:: https://dev.azure.com/xavierdupre3/mlprodict/_apis/build/status/sdpython.mlprodict
:target: https://dev.azure.com/xavierdupre3/mlprodict/

.. image:: https://badge.fury.io/py/mlprodict.svg
:target: https://pypi.org/project/mlprodict/

.. image:: https://img.shields.io/badge/license-MIT-blue.svg
:alt: MIT License
:target: http://opensource.org/licenses/MIT

.. image:: https://codecov.io/github/sdpython/mlprodict/coverage.svg?branch=master
:target: https://codecov.io/github/sdpython/mlprodict?branch=master

.. image:: http://img.shields.io/github/issues/sdpython/mlprodict.png
:alt: GitHub Issues
:target: https://github.com/sdpython/mlprodict/issues

.. image:: http://www.xavierdupre.fr/app/mlprodict/helpsphinx/_images/nbcov.png
:target: http://www.xavierdupre.fr/app/mlprodict/helpsphinx/all_notebooks_coverage.html
:alt: Notebook Coverage

.. image:: https://pepy.tech/badge/mlprodict/month
:target: https://pepy.tech/project/mlprodict/month
:alt: Downloads

.. image:: https://img.shields.io/github/forks/sdpython/mlprodict.svg
:target: https://github.com/sdpython/mlprodict/
:alt: Forks

.. image:: https://img.shields.io/github/stars/sdpython/mlprodict.svg
:target: https://github.com/sdpython/mlprodict/
:alt: Stars

.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/sdpython/mlprodict/master?filepath=_doc%2Fnotebooks

.. image:: https://img.shields.io/github/repo-size/sdpython/mlprodict
:target: https://github.com/sdpython/mlprodict/
:alt: size

*mlprodict* was initially started to help implementing converters
to *ONNX*. The main features is a python runtime for
*ONNX* (class `OnnxInference
`_),
visualization tools
(see `Visualization
`_),
and a `numpy API for ONNX
`_).
The package also provides tools to compare
predictions, to benchmark models converted with
`sklearn-onnx `_.

::

import numpy
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_iris
from mlprodict.onnxrt import OnnxInference
from mlprodict.onnxrt.validate.validate_difference import measure_relative_difference
from mlprodict import __max_supported_opset__, get_ir_version

iris = load_iris()
X = iris.data[:, :2]
y = iris.target
lr = LinearRegression()
lr.fit(X, y)

# Predictions with scikit-learn.
expected = lr.predict(X[:5])
print(expected)

# Conversion into ONNX.
from mlprodict.onnx_conv import to_onnx
model_onnx = to_onnx(lr, X.astype(numpy.float32),
black_op={'LinearRegressor'},
target_opset=__max_supported_opset__)
print("ONNX:", str(model_onnx)[:200] + "\n...")

# Predictions with onnxruntime
model_onnx.ir_version = get_ir_version(__max_supported_opset__)
oinf = OnnxInference(model_onnx, runtime='onnxruntime1')
ypred = oinf.run({'X': X[:5].astype(numpy.float32)})
print("ONNX output:", ypred)

# Measuring the maximum difference.
print("max abs diff:", measure_relative_difference(expected, ypred['variable']))

# And the python runtime
oinf = OnnxInference(model_onnx, runtime='python')
ypred = oinf.run({'X': X[:5].astype(numpy.float32)},
verbose=1, fLOG=print)
print("ONNX output:", ypred)

**Installation**

Installation from *pip* should work unless you need the latest
development features.

::

pip install mlprodict

The package includes a runtime for *ONNX*. That's why there
is a limited number of dependencies. However, some features
relies on *sklearn-onnx*, *onnxruntime*, *scikit-learn*.
They can be installed with the following instructions:

::

pip install mlprodict[all]

The code is available at
`GitHub/mlprodict `_
and has `online documentation `_.