Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sdpython/onnx-extended
New operators for the ReferenceEvaluator, new kernels for onnxruntime, CPU, CUDA
https://github.com/sdpython/onnx-extended
cuda machine-learning onnx onnxruntime python
Last synced: 15 days ago
JSON representation
New operators for the ReferenceEvaluator, new kernels for onnxruntime, CPU, CUDA
- Host: GitHub
- URL: https://github.com/sdpython/onnx-extended
- Owner: sdpython
- License: mit
- Created: 2023-03-25T11:24:53.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-09-27T08:18:27.000Z (4 months ago)
- Last Synced: 2025-01-16T22:11:35.242Z (22 days ago)
- Topics: cuda, machine-learning, onnx, onnxruntime, python
- Language: Python
- Homepage: https://sdpython.github.io/doc/onnx-extended/dev/
- Size: 2.14 MB
- Stars: 31
- Watchers: 4
- Forks: 6
- Open Issues: 4
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOGS.rst
- License: LICENSE.txt
Awesome Lists containing this project
README
.. image:: https://github.com/sdpython/onnx-extended/raw/main/_doc/_static/logo.png
:width: 120onnx-extended: extensions for onnx and onnxruntime
==================================================.. image:: https://dev.azure.com/xavierdupre3/onnx-extended/_apis/build/status/sdpython.onnx-extended
:target: https://dev.azure.com/xavierdupre3/onnx-extended/
.. image:: https://badge.fury.io/py/onnx-extended.svg
:target: http://badge.fury.io/py/onnx-extended
.. image:: http://img.shields.io/github/issues/sdpython/onnx-extended.png
:alt: GitHub Issues
:target: https://github.com/sdpython/onnx-extended/issues
.. image:: https://img.shields.io/badge/license-MIT-blue.svg
:alt: MIT License
:target: https://opensource.org/license/MIT/
.. image:: https://img.shields.io/github/repo-size/sdpython/onnx-extended
:target: https://github.com/sdpython/onnx-extended/
:alt: size
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black**onnx-extended** extends the list of supported operators in onnx
reference implementation and `onnxruntime
`_,
or implements faster versions in C++.
Documentation `onnx-extended
`_.
Source are available on `github/onnx-extended
`_.Use a C++ implementation of existing operators
++++++++++++++++++++++++++++++++++++++++++++++.. code-block:: python
import timeit
import numpy as np
from onnx import TensorProto
from onnx.helper import (
make_graph,
make_model,
make_node,
make_opsetid,
make_tensor_value_info,
)
from onnx.reference import ReferenceEvaluator
from onnxruntime import InferenceSession
from onnx_extended.ext_test_case import measure_time
from onnx_extended.reference import CReferenceEvaluatorX = make_tensor_value_info("X", TensorProto.FLOAT, [None, None, None, None])
Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None, None, None, None])
B = make_tensor_value_info("B", TensorProto.FLOAT, [None, None, None, None])
W = make_tensor_value_info("W", TensorProto.FLOAT, [None, None, None, None])
node = make_node(
"Conv",
["X", "W", "B"],
["Y"],
pads=[1, 1, 1, 1],
dilations=[1, 1],
strides=[2, 2],
)
graph = make_graph([node], "g", [X, W, B], [Y])
onnx_model = make_model(graph, opset_imports=[make_opsetid("", 16)])sH, sW = 64, 64
X = np.arange(sW * sH).reshape((1, 1, sH, sW)).astype(np.float32)
W = np.ones((1, 1, 3, 3), dtype=np.float32)
B = np.array([[[[0]]]], dtype=np.float32)sess1 = ReferenceEvaluator(onnx_model)
sess2 = CReferenceEvaluator(onnx_model) # 100 times fasterexpected = sess1.run(None, {"X": X, "W": W, "B": B})[0]
got = sess2.run(None, {"X": X, "W": W, "B": B})[0]
diff = np.abs(expected - got).max()
print(f"difference: {diff}")f1 = lambda: sess1.run(None, {"X": X, "W": W, "B": B})[0]
f2 = lambda: sess2.run(None, {"X": X, "W": W, "B": B})[0]
print("onnx:", timeit.timeit(f1, globals=globals(), number=5))
print("onnx-extended:", timeit.timeit(f2, globals=globals(), number=5))::
difference: 0.0
onnx: 0.024006774998269975
onnx-extended: 0.0002316169993719086Build with CUDA, openmp, eigen, onnxruntime
+++++++++++++++++++++++++++++++++++++++++++The package also contains some dummy examples on how to
build with C++ functions (`pybind11 `_,
`cython `_),
with `openmp `_,
`eigen `_
with or without CUDA. It also shows how to create a custom operator
for *onnxruntime* in C++.The version released on `pypi/onnx-extended `_
only works on CPU. It needs to be manually built to enable
the code using CUDA. The build will automatically link with CUDA if it is found.
If not, some extensions might not be available.::
python setup.py build_ext --inplace
# pip install -e .It is possible to use a specific version of CUDA:
::
python setup.py build_ext --inplace --cuda-version=11.8
# or (not working yet)
# pip install -e . --config-settings="--cuda-version=11.8"
# pip install -e . --global-option="--cuda-version=11.8"
export USE_CUDA=11.8
pip install -e .`NVTX `_
can be enabled with the following command:::
python setup.py build_ext --inplace --use_nvtx 1
# or (not working yet)
# pip install -e . --config-settings="--use_nvtx=1"
pip install -e . --global-option "--use_nvtx=1"Experimental cython binding for onnxruntime
+++++++++++++++++++++++++++++++++++++++++++The python onnxruntime package relies on pybind11 to expose
its functionalities. *onnx-extended* tries to build a cython wrapper
around the C/C++ API of onnxruntime. cython relies on python C API
and is faster than pybind11. This different may be significant when
onnxruntime is used on small graphs and tensors.Custom kernels for onnxruntime
++++++++++++++++++++++++++++++onnxruntime provides an API to add custom implementation
for existing or new onnx operators. An example for CPU.::
from onnxruntime import InferenceSession, SessionOptions
from onnx_extended.ortops.optim.cpu import get_ort_ext_libsr = get_ort_ext_libs()
opts = SessionOptions()
if r is not None:
opts.register_custom_ops_library(r[0])sess_cus = InferenceSession(
onx_modified.SerializeToString(), opts, providers=["CPUExecutionProvider"]
)