Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/seagat2011/euclid-automated-theorem-prover

Automated Theorem Prover written in javascript HTML5 CSS3
https://github.com/seagat2011/euclid-automated-theorem-prover

atp itp

Last synced: about 16 hours ago
JSON representation

Automated Theorem Prover written in javascript HTML5 CSS3

Awesome Lists containing this project

README

        

NOTES

Compatibility: Chrome 53+ (Windows) | Firefox 123.0.1+ (Windows)

STYLEGUIDE

GOOD FORMATTING

TEST CASE [PASS]
{ 1 } { + } { 1 } = { 2 }
{ 2 } { + } { 2 } = { 4 }
{ 4 } { + } { 2 } = { 6 }
{ 1 } { + } { 1 } { + } { 1 } { + } { 1 } { + } { 1 } { + } { 1 } = { 2 }
Prove { 1 } { + } { 2 } { + } { 2 } { + } { 1 } = { 6 }

TEST CASE [PASS]
( { a } + { b } ) ^ { 2 } = { { c } ^ { 2 } } + { 2ab }
{ { a } ^ { 2 } } + { 2ab } + { b ^ { 2 } } = ( { a } + { b } ) ^ { 2 }
( { a } + { b } ) ^ { 2 } - { 2ab } = { c } ^ { 2 }
{ { a } ^ { 2 } } + { 2ab } + { b ^ { 2 } } - { 2ab } = { { a } ^ { 2 } } + { { b } ^ { 2 } }
Prove { { a } ^ { 2 } } + { { b } ^ { 2 } } = { c } ^ { 2 }

TEST CASE [PASS]
{ { a } raised { 2 } } plus { 2ab } plus { b raised { 2 } } <== ( { a } plus { b } ) raised { 2 }
( { a } plus { b } ) raised { 2 } minus { 2ab } = { c } raised { 2 } <== ( { a } plus { b } ) raised { 2 } = { { c } raised { 2 } } plus { 2ab }
{ { a } raised { 2 } } plus { 2ab } minus { 2ab } plus { b raised { 2 } } ==> { { a } raised { 2 } } plus { { b } raised { 2 } }
( { a } plus { b } ) raised { 2 } = { { c } raised { 2 } } plus { 2ab }
Prove { { a } raised { 2 } } plus { { b } raised { 2 } } = { c } raised { 2 }

TEST CASE [PASS]
primes = { a } raised { 2 } + { b } raised { 2 } , where (a,b) in setz
{ 1 } mod { 4 } = { a } raised { 2 } + { b } raised { 2 }
Prove primes = { 1 } mod { 4 }

POOR FORMATTING

TEST CASE: RENDER [PASS], PROOF [FAIL]
{{a}raised{2}}plus{2ab}plus{b raised{2}}<==({a}plus{b})raised{2}
({a}plus{b})raised{2}minus{2ab}={c}raised{2}<==({a}plus{b})raised{2}={{c}raised{2}}plus{2ab}
{{a}raised{2}}plus{2ab}minus{2ab}plus{b raised{2}}==>{{a}raised{2}}plus{{b}raised{2}}
({a}plus{b})raised{2}={{c}raised{2}}plus{2ab}
Prove {{a}raised{2}}plus{{b}raised{2}}={c}raised{2}

SYMBOL LIBRARY

ref: https://documentation.libreoffice.org

PROOFGUIDE

LEMMA SUBSTITUTION FORMAT

{ LHS... } (<==|<==>|==>) { RHS... } [, comment]
.
.

AXIOM FORMAT

{ LHS... } = { RHS... } [, comment]
.
.

PROOF FORMAT
Prove { LHS... } = { RHS... }

QUICK FORMAT

TEST CASE [PASS]
primes = a raised 2 + b raised 2 , where (a,b) in setz
1 mod 4 = a raised 2 + b raised 2
Prove primes = 1 mod 4

SCOPED FORMAT

TEST CASE [PASS]
primes = { a } raised { 2 } + { b } raised { 2 } , where (a,b) in setz
{ 1 } mod { 4 } = { a } raised { 2 } + { b } raised { 2 }
Prove primes = { 1 } mod { 4 }

## Screenshot 1
![screenshot](IMG/Screenshot_2018-06-03_12-17-39.png)

## Screenshot 2
![screenshot](IMG/sample_screenshot.png)

## Screenshot 3
![screenshot](IMG/sample_screenshot_3.png)

## Screenshot 4
![screenshot](IMG/sample_screenshot_5.png)