An open API service indexing awesome lists of open source software.

https://github.com/seanlee97/angle

Train and Infer Powerful Sentence Embeddings with AnglE | đŸ”Ĩ SOTA on STS and MTEB Leaderboard
https://github.com/seanlee97/angle

dense-retrieval embeddings information-retrieval llama llama2 llm mteb rag retrieval-augmented-generation semantic-similarity semantic-textual-similarity sentence-embedding sentence-embeddings sentence-vector sts stsbenchmark text-embedding text-similarity text-vector text2vec

Last synced: 9 days ago
JSON representation

Train and Infer Powerful Sentence Embeddings with AnglE | đŸ”Ĩ SOTA on STS and MTEB Leaderboard

Awesome Lists containing this project

README

        

EN | [įŽ€äŊ“中文](README_zh.md)

# AnglE 📐
> Sponsored by Mixedbread

**For more detailed usage, please read the 📘 document:** https://angle.readthedocs.io/en/latest/index.html


https://arxiv.org/abs/2309.12871


PyPI version


PyPI Downloads


Read the docs

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sick-r-1)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick-r-1?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts16)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts15)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts14)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts13)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts12)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts-benchmark)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark?p=angle-optimized-text-embeddings)

đŸ“ĸ **Train/Infer Powerful Sentence Embeddings with AnglE.**
This library is from the paper: [AnglE: Angle-optimized Text Embeddings](https://arxiv.org/abs/2309.12871). It allows for training state-of-the-art BERT/LLM-based sentence embeddings with just a few lines of code. AnglE is also a general sentence embedding inference framework, allowing for infering a variety of transformer-based sentence embeddings.

## ✨ Features

**Loss**:
- 📐 AnglE loss (ACL24)
- ⚖ Contrastive loss
- 📏 CoSENT loss
- â˜•ī¸ Espresso loss (ICLR 2025, a.k.a 2DMSE, detail: [README_ESE](README_ESE.md))

**Backbones**:
- BERT-based models (BERT, RoBERTa, ELECTRA, ALBERT, etc.)
- LLM-based models (LLaMA, Mistral, Qwen, etc.)
- Bi-directional LLM-based models (LLaMA, Mistral, Qwen, OpenELMo, etc.. refer to: https://github.com/WhereIsAI/BiLLM)

**Training**:
- Single-GPU training
- Multi-GPU training

> http://makeapullrequest.com
More features will be added in the future.

## 🏆 Achievements

📅 May 16, 2024 | Paper "[AnglE: Angle-optimized Text Embeddings](https://arxiv.org/abs/2309.12871)" is accepted by ACL 2024 Main Conference.

📅 Mar 13, 2024 | Paper "[BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings](https://arxiv.org/abs/2311.05296)" is accepted by NAACL 2024 Main Conference.

📅 Mar 8, 2024 | 🍞 [mixedbread's embedding](https://www.mixedbread.ai/blog/mxbai-embed-large-v1) ([mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)) achieves SOTA on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of **64.68**! The model is trained using AnglE. Congrats mixedbread!

📅 Dec 4, 2023 | Our universal sentence embedding [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) achieves SOTA on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of **64.64**! The model is trained using AnglE.

📅 Dec, 2023 | AnglE achieves SOTA performance on the STS Bechmark Semantic Textual Similarity!

## 🤗 Official Pretrained Models

BERT-based models:

| 🤗 HF | Max Tokens | Pooling Strategy | Scenario |
|----|------|------|------|
| [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 512 | cls | English, General-purpose |
| [WhereIsAI/UAE-Code-Large-V1](https://huggingface.co/WhereIsAI/UAE-Code-Large-V1) | 512 | cls | Code Similarity |
| [WhereIsAI/pubmed-angle-base-en](https://huggingface.co/WhereIsAI/pubmed-angle-base-en) | 512 | cls | Medical Similarity |
| [WhereIsAI/pubmed-angle-large-en](https://huggingface.co/WhereIsAI/pubmed-angle-large-en) | 512 | cls | Medical Similarity |

LLM-based models:

| 🤗 HF (lora weight) | Backbone | Max Tokens | Prompts | Pooling Strategy | Scenario |
|----|------|------|------|------|------|
| [SeanLee97/angle-llama-13b-nli](https://huggingface.co/SeanLee97/angle-llama-13b-nli) | NousResearch/Llama-2-13b-hf | 4096 | `Prompts.A` | last token | English, Similarity Measurement |
| [SeanLee97/angle-llama-7b-nli-v2](https://huggingface.co/SeanLee97/angle-llama-7b-nli-v2) | NousResearch/Llama-2-7b-hf | 4096 | `Prompts.A` | last token | English, Similarity Measurement |

**💡 You can find more third-party embeddings trained with AnglE in [HuggingFace Collection](https://huggingface.co/collections/SeanLee97/angle-based-embeddings-669a181354729d168a6ead9b)**

## 🚀 Quick Start

### âŦ‡ī¸ Installation

```bash
python -m pip install -U angle-emb
```

### ⌛ Infer BERT-based Model
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)

1) **With Prompts**: You can specify a prompt with `prompt=YOUR_PROMPT` in `encode` method. If set a prompt, the inputs should be a list of dict or a single dict with key `text`, where `text` is the placeholder in the prompt for the input text. You can use other placeholder names. We provide a set of predefined prompts in `Prompts` class, you can check them via `Prompts.list_prompts()`.

```python
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
# For retrieval tasks, we use `Prompts.C` as the prompt for the query when using UAE-Large-V1 (no need to specify prompt for documents).
# When specify prompt, the inputs should be a list of dict with key 'text'
qv = angle.encode({'text': 'what is the weather?'}, to_numpy=True, prompt=Prompts.C)
doc_vecs = angle.encode([
'The weather is great!',
'it is rainy today.',
'i am going to bed'
], to_numpy=True)

for dv in doc_vecs:
print(cosine_similarity(qv[0], dv))
```

2) **Without Prompts**: no need to specify a prompt. Just input a list of strings or a single string.

```python
from angle_emb import AnglE
from angle_emb.utils import cosine_similarity

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
# for non-retrieval tasks, we don't need to specify prompt when using UAE-Large-V1.
doc_vecs = angle.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
])

for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```

### ⌛ Infer LLM-based Models
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)

If the pretrained weight is a LoRA-based model, you need to specify the backbone via `model_name_or_path` and specify the LoRA path via the `pretrained_lora_path` in `from_pretrained` method.

```python
import torch
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity

angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',
pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2',
pooling_strategy='last',
is_llm=True,
torch_dtype=torch.float16).cuda()
print('All predefined prompts:', Prompts.list_prompts())
doc_vecs = angle.encode([
{'text': 'The weather is great!'},
{'text': 'The weather is very good!'},
{'text': 'i am going to bed'}
], prompt=Prompts.A)

for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```

### ⌛ Infer BiLLM-based Models
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)

Specify `apply_billm` and `billm_model_class` to load and infer billm models

```python
import os
# set an environment variable for billm start index
os.environ['BiLLM_START_INDEX'] = '31'

import torch
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity

# specify `apply_billm` and `billm_model_class` to load billm models
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',
pretrained_lora_path='SeanLee97/bellm-llama-7b-nli',
pooling_strategy='last',
is_llm=True,
apply_billm=True,
billm_model_class='LlamaForCausalLM',
torch_dtype=torch.float16).cuda()

doc_vecs = angle.encode([
{'text': 'The weather is great!'},
{'text': 'The weather is very good!'},
{'text': 'i am going to bed'}
], prompt='The representative word for sentence {text} is:"')

for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```

### ⌛ Infer Espresso/Matryoshka Models
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1QJcA2Mvive4pBxWweTpZz9OgwvE42eJZ?usp=sharing)

Specify `layer_index` and `embedding_size` to truncate embeddings.

```python
from angle_emb import AnglE
from angle_emb.utils import cosine_similarity

angle = AnglE.from_pretrained('mixedbread-ai/mxbai-embed-2d-large-v1', pooling_strategy='cls').cuda()
# truncate layer
angle = angle.truncate_layer(layer_index=22)
# specify embedding size to truncate embeddings
doc_vecs = angle.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
], embedding_size=768)

for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```

### ⌛ Infer Third-party Models

You can load any transformer-based third-party models such as `mixedbread-ai/mxbai-embed-large-v1`, `sentence-transformers/all-MiniLM-L6-v2`, and `BAAI/bge-large-en-v1.5` using `angle_emb`.

Here is an example:

```python
from angle_emb import AnglE

model = AnglE.from_pretrained('mixedbread-ai/mxbai-embed-large-v1', pooling_strategy='cls').cuda()
vec = model.encode('hello world', to_numpy=True)
print(vec)
```

## Batch Inference

It is recommended to use Mixedbread's `batched` library to speed up the inference process.

```bash
python -m pip install batched
```

```python
import batched
from angle_emb import AnglE

model = AnglE.from_pretrained("WhereIsAI/UAE-Large-V1", pooling_strategy='cls').cuda()
model.encode = batched.dynamically(model.encode, batch_size=64)

vecs = model.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
] * 50)
```

## đŸ•¸ī¸ Custom Train

💡 For more details, please refer to the [training and fintuning](https://angle.readthedocs.io/en/latest/notes/training.html).

### đŸ—‚ī¸ 1. Data Prepation

We currently support three dataset formats:

1) `DatasetFormats.A`: it is a pair format with three columns: `text1`, `text2`, and `label` (0/1).

2) `DatasetFormats.B`: it is a triple format with three columns: `text`, `positive`, and `negative`. `positive` and `negative` store the positive and negative samples of `text`.

3) `DatasetFormats.C`: it is a pair format with two columns: `text`, `positive`. `positive` store the positive sample of `text`.

You need to prepare your data into huggingface `datasets.Dataset` in one of the formats in terms of your supervised data.

### 🚂 2. Train with CLI [Recommended]

Use `angle-trainer` to train your AnglE model in cli mode.

1) Single gpu training:

Usage:

```bash
CUDA_VISIBLE_DEVICES=0 angle-trainer --help
```

2) Multi-gpu training:

Usage:

```bash
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 -m angle_emb.angle_trainer --help
```

### 🚂 3. Custom Train

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1h28jHvv_x-0fZ0tItIMjf8rJGp3GcO5V?usp=sharing)

```python
from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer

# 1. load pretrained model
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()

# 2. load dataset
# `text1`, `text2`, and `label` are three required columns.
ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])

# 3. transform data
train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)

# 4. fit
angle.fit(
train_ds=train_ds,
valid_ds=valid_ds,
output_dir='ckpts/sts-b',
batch_size=32,
epochs=5,
learning_rate=2e-5,
save_steps=100,
eval_steps=1000,
warmup_steps=0,
gradient_accumulation_steps=1,
loss_kwargs={
'cosine_w': 1.0,
'ibn_w': 1.0,
'cln_w': 1.0,
'angle_w': 0.02,
'cosine_tau': 20,
'ibn_tau': 20,
'angle_tau': 20
},
fp16=True,
logging_steps=100
)

# 5. evaluate
corrcoef = angle.evaluate(ds['test'])
print('Spearman\'s corrcoef:', corrcoef)
```

### 💡 Others

- To enable `llm` training, please specify `--is_llm 1` and configure appropriate LoRA hyperparameters.
- To enable `billm` training, please specify `--apply_billm 1` and configure appropriate `billm_model_class` such as `LLamaForCausalLM` (refer to: https://github.com/WhereIsAI/BiLLM?tab=readme-ov-file#usage).
- To enable espresso sentence embeddings (ESE), please specify `--apply_ese 1` and configure appropriate ESE hyperparameters via `--ese_kl_temperature float` and `--ese_compression_size integer`.
- To convert the trained AnglE models to `sentence-transformers`, please run `python scripts/convert_to_sentence_transformers.py --help` for more details.

## 💡 4. Fine-tuning Tips

For more details, please refer to the [documentation](https://angle.readthedocs.io/en/latest/notes/training.html#fine-tuning-tips).

1ī¸âƒŖ If your dataset format is `DatasetFormats.A`, it is recommended to slightly increase the weight for `cosine_w` or slightly decrease the weight for `ibn_w`.

2ī¸âƒŖ If your dataset format is `DatasetFormats.B`, it is recommended to set `cosine_w` to 0, and set `angle_w` to a small value like 0.02. Be sure to set `cln_w` and `ibn_w`.

3ī¸âƒŖ If your dataset format is `DatasetFormats.C`, only `ibn_w` and `ibn_tau` are effective. You don't need to tune other parameters.

4ī¸âƒŖ To alleviate information forgetting in fine-tuning, it is better to specify the `teacher_name_or_path`. If the `teacher_name_or_path` equals `model_name_or_path`, it will conduct self-distillation. **It is worth to note that** `teacher_name_or_path` has to have the same tokenizer as `model_name_or_path`. Or it will lead to unexpected results.

## 5. Finetuning and Infering AnglE with `sentence-transformers`

- **Training:** SentenceTransformers also provides a implementation of [AnglE loss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss). **But it is partially implemented and may not work well as the official code. We recommend to use the official `angle_emb` for fine-tuning AnglE model.**

- **Infering:** If your model is trained with `angle_emb`, and you want to use it with `sentence-transformers`. You can convert it to `sentence-transformers` model using the script `examples/convert_to_sentence_transformers.py`.

# đŸĢĄ Citation

You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:

```bibtex
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
```

# 📜 ChangeLogs

| 📅 | Description |
|----|------|
| 2024 May 21 | support Espresso Sentence Embeddings |
| 2024 Feb 7 | support training with only positive pairs (`DatasetFormats.C`) |
| 2023 Dec 4 | Release a universal English sentence embedding model: [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) |
| 2023 Nov 2 | Release an English pretrained model: `SeanLee97/angle-llama-13b-nli` |
| 2023 Oct 28 | Release two chinese pretrained models: `SeanLee97/angle-roberta-wwm-base-zhnli-v1` and `SeanLee97/angle-llama-7b-zhnli-v1`; Add chinese README.md |

# 📧 Contact

If you have any questions or suggestions, please feel free to contact us via email: [email protected]

# Š License

This project is licensed under the MIT License.
For the pretrained models, please refer to the corresponding license of the models.