Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/seba-1511/qrl
Code for "Policy Learning and Evaluation with Randomized Quasi-Monte Carlo"
https://github.com/seba-1511/qrl
Last synced: 11 days ago
JSON representation
Code for "Policy Learning and Evaluation with Randomized Quasi-Monte Carlo"
- Host: GitHub
- URL: https://github.com/seba-1511/qrl
- Owner: seba-1511
- License: apache-2.0
- Created: 2022-02-15T02:57:11.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-03-12T22:34:07.000Z (almost 3 years ago)
- Last Synced: 2024-12-02T18:58:29.900Z (24 days ago)
- Language: Python
- Size: 14.6 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Policy Learning and Evaluation with Randomized Quasi-Monte Carlo
[![AISTATS](https://img.shields.io/badge/AISTATS-2022-informational.svg)](http://seba1511.net/projects/qrl/)
Code release for "Policy Learning and Evaluation with Randomized Quasi-Monte Carlo", AISTATS 2022.
This code provides a re-implementation of SAC combined with RQMC. It is based on the PyTorch implementation of SAC in [spinning-up](https://github.com/openai/spinningup).
## Resources
* Website: [seba1511.net/projects/qrl](http://seba1511.net/projects/qrl)
* Preprint: [arxiv.org/abs/2202.07808](https://arxiv.org/abs/2202.07808)
* Code: [github.com/seba-1511/qrl](https://github.com/seba-1511/qrl)## Citation
Please cite this work as follows:
> S. M. R. Arnold, P. L'Ecuyer, L. Chen, Y. Chen, F. Sha, *Policy Learning and Evaluation with Randomized Quasi-Monte Carlo*. AISTATS 2022.
or with the following BibTex entry:
~~~bibtex
@inproceedings{Arnold2022qrl,
title={Policy Learning and Evaluation with Randomized Quasi-Monte Carlo},
author={Arnold, S\'ebastien M. R. and L'Ecuyer, Pierre and Chen, Liyu and Chen, Yi-fan and Sha, Fei},
year={2022},
booktitle={Proceedings of The 25th International Conference on Artificial Intelligence and Statistics},
volume={131},
series={Proceedings of Machine Learning Research},
publisher={PMLR},
}
~~~## Usage
Policy learning experiments can be run with the following command:
~~~shell
python qsac.py --env HalfCheetah-v2 --rqmc --multi_actions 4
~~~