Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/seissol/matrices
https://github.com/seissol/matrices
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/seissol/matrices
- Owner: SeisSol
- License: bsd-3-clause
- Created: 2020-05-20T15:56:56.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2024-10-23T12:22:17.000Z (3 months ago)
- Last Synced: 2024-11-05T20:13:36.886Z (3 months ago)
- Language: Python
- Size: 290 KB
- Stars: 0
- Watchers: 7
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/sebwolf-de/b9c4e4cac4b1c91e4645e5a319e18c9a/raw/seissol-matrices.json)
# SeisSol Matrices #
## Basis functions ##
We use the basis functions based on Jacobi polynomials as explained in appendix A of J. de la Puente, ‘Seismic Wave Simulation for Complex Rheologies on Unstructured Meshes’, PhD-Thesis, Ludwig-Maximilians-Universität München, Munich, 2008.
On triangles, we denote the polynomials as $\Phi_{k(p,q)}$, where $k$ is a multiindex, based on $p$ and $q$.
If we use basis functions for order $\mathcal{O}$, we have $\frac{1}{2} \times \mathcal{O} \times (\mathcal{O} + 1)$ basis functions.On tetrahedrons, we denote the polynomials as $\Psi_{k(p,q,r)}$, where $l$ is a multiindex, based on $p$, $q$ and $r$.
If we use basis functions for order $\mathcal{O}$, we have $\frac{1}{6} \times \mathcal{O} \times (\mathcal{O} + 1) \times (\mathcal{O} + 2)$ basis functions.## Matrices ##
### Discountinuos Galerkin matrices ###
| Notation | Formula | SeisSol |
| ------------------ | --------------------------------------------- | ------------------ |
| $M_{kl}$ | $\int_T \Psi_k \Psi_l dx$ | `M3` |
| | $\int_T \Phi_k \Phi_l dx$ | `M2` |
| $F_{kl}^{-,j}$ | $\int_T \Psi_k \Psi_l dx$ | `rT` |