https://github.com/senya-ashukha/simple-equivariant-gnn
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks
https://github.com/senya-ashukha/simple-equivariant-gnn
deep-learning deep-neural-networks egnn equivariance gnn graph-neural-networks homo molecules neural-networks pytorch qm9
Last synced: 8 days ago
JSON representation
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks
- Host: GitHub
- URL: https://github.com/senya-ashukha/simple-equivariant-gnn
- Owner: senya-ashukha
- License: apache-2.0
- Created: 2022-01-13T10:38:16.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-14T12:25:53.000Z (over 3 years ago)
- Last Synced: 2025-04-02T14:02:14.594Z (about 2 months ago)
- Topics: deep-learning, deep-neural-networks, egnn, equivariance, gnn, graph-neural-networks, homo, molecules, neural-networks, pytorch, qm9
- Language: Python
- Homepage:
- Size: 193 KB
- Stars: 130
- Watchers: 3
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Simple implementation of Equivariant GNN
[](https://colab.research.google.com/github/senya-ashukha/simple-equivariant-gnn/blob/main/simple-egnn.ipynb)
- A short implementation of [E(n) Equivariant Graph Neural Networks](https://arxiv.org/pdf/2102.09844.pdf) for [HOMO energy](https://en.wikipedia.org/wiki/HOMO_and_LUMO) prediction.
- Just 50 lines of code;
- The implementation is based on pure PyTorch & Numpy, it has no external packages (like PyTorch-geometric).
- Closely matches the Mean Absolute Error reported in the paper.
![]()