Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sepandhaghighi/pyrgg

🔧 Python Random Graph Generator
https://github.com/sepandhaghighi/pyrgg

beerpay generator gpu graph-computing graph-generation graph-generator gtgraph math mathematics python python3 script

Last synced: 3 days ago
JSON representation

🔧 Python Random Graph Generator

Awesome Lists containing this project

README

        



PyRGG: Python Random Graph Generator



PyPI version

Codecov
built with Python3
Discord Channel


## Overview


PyRGG is a user-friendly synthetic random graph generator that is written in Python and supports multiple graph file formats, such as DIMACS-Graph files. It can generate graphs of various sizes and is specifically designed to create input files for a wide range of graph-based research applications, including testing, benchmarking, and performance analysis of graph processing frameworks. PyRGG is aimed at computer scientists who are studying graph algorithms and graph processing frameworks.


Open Hub



PyPI Counter
PyPI Downloads


Github Stars


Branch
master
dev


CI



Code Quality

codebeat badge
CodeFactor

## Installation

### PyPI
- Check [Python Packaging User Guide](https://packaging.python.org/installing/)
- `pip install pyrgg==1.6`

### Source Code
- Download [Version 1.6](https://github.com/sepandhaghighi/pyrgg/archive/v1.6.zip) or [Latest Source ](https://github.com/sepandhaghighi/pyrgg/archive/dev.zip)
- `pip install .`

### Conda
- Check [Conda Managing Package](https://conda.io)
- `conda install -c sepandhaghighi pyrgg`

### Exe Version

⚠️ Only Windows

⚠️ For PyRGG targeting Windows < 10, the user needs to take special care to include the Visual C++ run-time `.dlls`(for more information visit [here](https://pyinstaller.org/en/v3.3.1/usage.html#windows))

- Download [Exe-Version 1.6](https://github.com/sepandhaghighi/pyrgg/releases/download/v1.6/PYRGG-1.6.exe)
- Run `PYRGG-1.6.exe`

### System Requirements
PyRGG will likely run on a modern dual core PC. Typical configuration is:

- Dual Core CPU (2.0 Ghz+)
- 4GB of RAM

⚠️ Note that it may run on lower end equipment though good performance is not guaranteed

## Usage
- Open `CMD` (Windows) or `Terminal` (Linux)
- Run `pyrgg` or `python -m pyrgg` (or run `PYRGG.exe`)
- Enter data

## Engines

### PyRGG


Parameter
Description


Vertices Number
The total number of vertices in the graph


Min Edge Number
The minimum number of edges connected to each vertex


Max Edge Number
The maximum number of edges connected to each vertex


Weighted / Unweighted
Specifies whether the graph is weighted or unweighted


Min Weight
The minimum weight of the edges (if weighted)


Max Weight
The maximum weight of the edges (if weighted)


Signed / Unsigned
Specifies whether the edge weights are signed or unsigned


Directed / Undirected
Specifies whether the graph is directed or undirected


Self Loop / No Self Loop
Specifies whether self-loop is allowed or not


Simple / Multigraph
Specifies whether the graph is a simple graph or a multigraph

### Erdős–Rényi-Gilbert


Parameter
Description


Vertices Number
The total number of vertices in the graph


Probability
The probability for edge creation between any two vertices


Directed / Undirected
Specifies whether the graph is directed or undirected

### Erdős–Rényi


Parameter
Description


Vertices Number
The total number of vertices in the graph


Edge Number
The total number of edges in the graph


Directed / Undirected
Specifies whether the graph is directed or undirected

## Supported Formats

### DIMACS

```
p sp
a

.
.
.

a
```

* [Document](http://www.diag.uniroma1.it/challenge9/format.shtml)
* [Sample 1](https://www.dropbox.com/s/i80tnwuuv4iyqet/100.gr.gz?dl=0) (100 Vertices , 3KB)
* [Sample 2](https://www.dropbox.com/s/lqk42pwu7o4xauv/1000.gr.gz?dl=0) (1000 Vertices , 13KB)
* [Sample 3](https://www.dropbox.com/s/93dp8cjs6lnu83u/1000000.gr.gz?dl=0) (1000000 Vertices , 7MB)
* [Sample 4](https://www.dropbox.com/s/rrxdc4wt0ldonfk/5000000.gr.gz?dl=0) (5000000 Vertices , 37MB)

### CSV

```
,,

.
.
.

,,
```

* [Document](https://en.wikipedia.org/wiki/Comma-separated_values)
* [Sample 1](https://www.dropbox.com/s/dmld0eadftnatr5/100.csv?dl=0) (100 Vertices , 3KB)
* [Sample 2](https://www.dropbox.com/s/juxah4nwamzdegr/1000.csv?dl=0) (1000 Vertices , 51KB)

### TSV

```

.
.
.


```

* [Document](https://en.wikipedia.org/wiki/Tab-separated_values)
* [Sample 1](https://www.dropbox.com/s/j3zgs4kx2paxe75/100.tsv?dl=0) (100 Vertices , 29KB)
* [Sample 2](https://www.dropbox.com/s/ykagmjgwlpim6dq/1000.tsv?dl=0) (1000 Vertices , 420KB)

### JSON

```
{
"properties": {
"directed": true,
"signed": true,
"multigraph": true,
"weighted": true,
"self_loop": true
},
"graph": {
"nodes":[
{
"id": 1
},

.
.
.

{
"id": n
}
],
"edges":[
{
"source": head_1,
"target": tail_1,
"weight": weight_1
},

.
.
.

{
"source": head_n,
"target": tail_n,
"weight": weight_n
}
]
}
}
```

* [Document](https://en.wikipedia.org/wiki/JSON)
* [Sample 1](https://www.dropbox.com/s/yvevoyb8559nytb/100.json?dl=0) (100 Vertices , 26KB)
* [Sample 2](https://www.dropbox.com/s/f6kljlch7p2rfhy/1000.json?dl=0) (1000 Vertices , 494KB)

### YAML
```
graph:
edges:
- source: head_1
target: tail_1
weight: weight_1

.
.
.

- source: head_n
target: tail_n
weight: weight_n

nodes:
- id: 1

.
.
.

- id: n
properties:
directed: true
multigraph: true
self_loop: true
signed: true
weighted: true
```

* [Document](https://en.wikipedia.org/wiki/YAML)
* [Sample 1](https://www.dropbox.com/s/9seljohtoqjzjzy/30.yaml?dl=0) (30 Vertices , 6KB)
* [Sample 2](https://www.dropbox.com/s/wtfh38rgmn29npi/100.yaml?dl=0) (100 Vertices , 35KB)

### Weighted Edge List
```


.
.
.


```

* [Document](http://www.cs.cmu.edu/~pbbs/benchmarks/graphIO.html)
* [Sample 1](https://www.dropbox.com/s/moie1xb2wj90y33/100.wel?dl=0) (100 Vertices , 5KB)
* [Sample 2](https://www.dropbox.com/s/h6pohl60okhdnt7/1000.wel?dl=0) (1000 Vertices , 192KB)

### ASP

```
node(1).
.
.
.
node(n).
edge(head_1,tail_1,weight_1).
.
.
.
edge(head_n,tail_n,weight_n).
```

* [Document](https://www.mat.unical.it/aspcomp2013/MaximalClique)
* [Sample 1](https://www.dropbox.com/s/4bufa1m4uamv48z/100.lp?dl=0) (100 Vertices , 7KB)
* [Sample 2](https://www.dropbox.com/s/w79fh1qva64namw/1000.lp?dl=0) (1000 Vertices , 76KB)

### Trivial Graph Format

```
1
.
.
.
n
#
1 2 weight_1
.
.
.
n k weight_n
```
* [Document](https://en.wikipedia.org/wiki/Trivial_Graph_Format)
* [Sample 1](https://www.dropbox.com/s/tehb6f3gz2o5v9c/100.tgf?dl=0) (100 Vertices , 4KB)
* [Sample 2](https://www.dropbox.com/s/9mjeq4w973189cc/1000.tgf?dl=0) (1000 Vertices , 61KB)

### UCINET DL Format

```
dl
format=edgelist1
n=
data:
1 2 weight_1
.
.
.
n k weight_n
```
* [Document](https://sites.google.com/site/ucinetsoftware/home)
* [Sample 1](https://www.dropbox.com/s/82wrl86uowwjud2/100.dl?dl=0) (100 Vertices , 8KB)
* [Sample 2](https://www.dropbox.com/s/kbzbsy47uvfqdsi/1000.dl?dl=0) (1000 Vertices , 729KB)

### Matrix Market

```
%%MatrixMarket matrix coordinate real general


.
.
.

```
* [Document](https://math.nist.gov/MatrixMarket/formats.html)
* [Sample 1](https://www.dropbox.com/s/ztw3vg0roups82q/100.mtx?dl=0) (100 Vertices , 59KB)
* [Sample 2](https://www.dropbox.com/s/skjjvbbzrpvryl4/1000.mtx?dl=0) (1000 Vertices , 1.8MB)

### Graph Line
```
: : ... :
: : ... :
.
.
.
: : ... :
```

* [Sample 1](https://www.dropbox.com/s/obmmb5nw1lca9z3/100.gl?dl=0) (100 Vertices , 17KB)
* [Sample 2](https://www.dropbox.com/s/intufsbudnmfv8m/1000.gl?dl=0) (1000 Vertices , 2.4MB)

### GDF

```
nodedef>name VARCHAR,label VARCHAR
node_1,node_1_label
node_2,node_2_label
.
.
.
node_n,node_n_label
edgedef>node1 VARCHAR,node2 VARCHAR, weight DOUBLE
node_1,node_2,weight_1
node_1,node_3,weight_2
.
.
.
node_n,node_2,weight_n
```

* [Sample 1](https://www.dropbox.com/s/7dqox0f8e1f859s/100.gdf?dl=0) (100 Vertices , 21KB)
* [Sample 2](https://www.dropbox.com/s/xabjzpp0p5sr4b9/1000.gdf?dl=0) (1000 Vertices , 690KB)

### GML

```
graph
[
multigraph 0
directed 0
node
[
id 1
label "Node 1"
]
node
[
id 2
label "Node 2"
]
.
.
.
node
[
id n
label "Node n"
]
edge
[
source 1
target 2
value W1
]
edge
[
source 2
target 4
value W2
]
.
.
.
edge
[
source n
target r
value Wn
]
]

```

* [Document](https://en.wikipedia.org/wiki/Graph_Modelling_Language)
* [Sample 1](https://www.dropbox.com/s/g9uvywn1fwt9aq7/100.gml?dl=0) (100 Vertices , 120KB)
* [Sample 2](https://www.dropbox.com/s/5gt5udezy56mlz9/1000.gml?dl=0) (1000 Vertices , 2.4MB)

### GEXF

```



PyRGG
File Name





...



...



```

* [Document](https://github.com/gephi/gexf/wiki/Basic-Concepts#network-topology)
* [Sample 1](https://www.dropbox.com/s/kgx8xl9j0dpk4us/100.gexf?dl=0) (100 Vertices , 63KB)
* [Sample 2](https://www.dropbox.com/s/7a380kf35buvusr/1000.gexf?dl=0) (1000 Vertices , 6.4MB)

### Graphviz

```
graph example
{
node1 -- node2 [weight=W1];
node3 -- node4 [weight=W2];
node1 -- node3 [weight=W3];
.
.
.
}
```

* [Document](https://graphviz.org/doc/info/lang.html)
* [Sample 1](https://www.dropbox.com/s/ukev1hi4kguomri/100.gv?dl=0) (100 Vertices , 11KB)
* [Sample 2](https://www.dropbox.com/s/vpvvliz96mdea1p/1000.gv?dl=0) (1000 Vertices , 106KB)
* [Online Visualization](https://dreampuf.github.io/GraphvizOnline/)

### Pickle

⚠️ Binary format

* [Document](https://docs.python.org/3.10/library/pickle.html)
* [Sample 1](https://www.dropbox.com/s/4s8zt9i13z39gts/100.p?dl=0) (100 Vertices , 12KB)
* [Sample 2](https://www.dropbox.com/s/fzurqu5au0p1b54/1000.p?dl=0) (1000 Vertices , 340KB)

## Issues & Bug Reports

Just fill an issue and describe it. We'll check it ASAP!
or send an email to [[email protected]](mailto:[email protected] "[email protected]").

You can also join our discord server


Discord Channel

## Citing

If you use PyRGG in your research, please cite the [JOSS paper](http://joss.theoj.org/papers/da33f691984d9a35f66ff93a391bbc26 "PyRGG JOSS Paper") ;-)


@article{Haghighi2017,
doi = {10.21105/joss.00331},
url = {https://doi.org/10.21105/joss.00331},
year = {2017},
month = {sep},
publisher = {The Open Journal},
volume = {2},
number = {17},
author = {Sepand Haghighi},
title = {Pyrgg: Python Random Graph Generator},
journal = {The Journal of Open Source Software}
}


JOSS



Zenodo
DOI

## References

1- 9th DIMACS Implementation Challenge - Shortest Paths

2- Problem Based Benchmark Suite

3- MaximalClique - ASP Competition 2013

4- Pitas, Ioannis, ed. Graph-based social media analysis. Vol. 39. CRC Press, 2016.

5- Roughan, Matthew, and Jonathan Tuke. "The hitchhikers guide to sharing graph data." 2015 3rd International Conference on Future Internet of Things and Cloud. IEEE, 2015.

6- Borgatti, Stephen P., Martin G. Everett, and Linton C. Freeman. "Ucinet for Windows: Software for social network analysis." Harvard, MA: analytic technologies 6 (2002).

7- Matrix Market: File Formats

8- Social Network Visualizer

9- Adar, Eytan. "GUESS: a language and interface for graph exploration." Proceedings of the SIGCHI conference on Human Factors in computing systems. 2006.

10- Skiena, Steven S. The algorithm design manual. Springer International Publishing, 2020.

11- Chakrabarti, Deepayan, Yiping Zhan, and Christos Faloutsos. "R-MAT: A recursive model for graph mining." Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004.

12- Zhong, Jianlong, and Bingsheng He. "An overview of medusa: simplified graph processing on gpus." ACM SIGPLAN Notices 47.8 (2012): 283-284.

13- Ellson, John, et al. "Graphviz and dynagraph—static and dynamic graph drawing tools." Graph drawing software. Springer, Berlin, Heidelberg, 2004. 127-148.

14- Gilbert, Edgar N. "Random graphs." The Annals of Mathematical Statistics 30.4 (1959): 1141-1144.

15- Erdős, Paul, and Alfréd Rényi. "On the strength of connectedness of a random graph." Acta Mathematica Hungarica 12.1 (1961): 261-267.



## Show Your Support

Star This Repo

Give a ⭐️ if this project helped you!

Donate to Our Project

If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .

PyRGG Donation