Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sergiosim/multicons
MultiCons (Multiple Consensuses) algorithm
https://github.com/sergiosim/multicons
clustering clustering-ensemble consensus-clustering frequent-closed-itemsets multicons multiple-consenuses unsupervised-learning
Last synced: about 2 months ago
JSON representation
MultiCons (Multiple Consensuses) algorithm
- Host: GitHub
- URL: https://github.com/sergiosim/multicons
- Owner: SergioSim
- License: mit
- Created: 2021-11-14T10:39:03.000Z (about 3 years ago)
- Default Branch: master
- Last Pushed: 2024-05-09T17:59:37.000Z (8 months ago)
- Last Synced: 2024-10-17T03:50:16.095Z (2 months ago)
- Topics: clustering, clustering-ensemble, consensus-clustering, frequent-closed-itemsets, multicons, multiple-consenuses, unsupervised-learning
- Language: Python
- Homepage: https://sergiosim.github.io/multicons/
- Size: 22.9 MB
- Stars: 3
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE.md
Awesome Lists containing this project
README
# MultiCons
This python package provides an implementation of the MultiCons (Multiple Consensus)
algorithm.MultiCons is a consensus clustering method that uses the frequent closed itemset mining
technique to find similarities in the base clustering solutions.The implementation aims to follow the original description of the MultiCons method from
the references below.## Installation
MultiCons is available on the Python Package Index (PyPI). It's installable using `pip`:
```bash
pip install multicons
```## Documentation
To get started, check out some examples or look up the reference API, please visit our
[documentation page](https://sergiosim.github.io/multicons/).## References
Atheer A. "A closed patterns-based approach to the consensus clustering problem".
Other [cs.OH]. Université Côte d’Azur, 2016. English. .
Retrieved from [tel.archives-ouvertes.fr](https://tel.archives-ouvertes.fr/tel-01478626)Atheer A., Pasquier N., Precioso F. "Using Closed Patterns to Solve the Consensus Clustering Problem".
International Journal of Software Engineering and Knowledge Engineering 2016 26:09n10, 1379-1397