Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/serpapi/google-search-results-python

Google Search Results via SERP API pip Python Package
https://github.com/serpapi/google-search-results-python

bing-image google-crawler google-images python scraping serp-api serpapi web-scraping

Last synced: 3 months ago
JSON representation

Google Search Results via SERP API pip Python Package

Awesome Lists containing this project

README

        

# Google Search Results in Python

[![Package](https://badge.fury.io/py/google-search-results.svg)](https://badge.fury.io/py/google-search-results)
[![Build](https://github.com/serpapi/google-search-results-python/actions/workflows/python-package.yml/badge.svg)](https://github.com/serpapi/google-search-results-python/actions/workflows/python-package.yml)

This Python package is meant to scrape and parse search results from Google, Bing, Baidu, Yandex, Yahoo, Home Depot, eBay and more, using [SerpApi](https://serpapi.com).

The following services are provided:
- [Search API](https://serpapi.com/search-api)
- [Search Archive API](https://serpapi.com/search-archive-api)
- [Account API](https://serpapi.com/account-api)
- [Location API](https://serpapi.com/locations-api) (Google Only)

SerpApi provides a [script builder](https://serpapi.com/demo) to get you started quickly.

## Installation

Python 3.7+
```bash
pip install google-search-results
```

[Link to the python package page](https://pypi.org/project/google-search-results/)

## Quick start

```python
from serpapi import GoogleSearch
search = GoogleSearch({
"q": "coffee",
"location": "Austin,Texas",
"api_key": ""
})
result = search.get_dict()
```

This example runs a search for "coffee" using your secret API key.

The SerpApi service (backend)
- Searches Google using the search: q = "coffee"
- Parses the messy HTML responses
- Returns a standardized JSON response
The GoogleSearch class
- Formats the request
- Executes a GET http request against SerpApi service
- Parses the JSON response into a dictionary

Et voilà...

Alternatively, you can search:
- Bing using BingSearch class
- Baidu using BaiduSearch class
- Yahoo using YahooSearch class
- DuckDuckGo using DuckDuckGoSearch class
- eBay using EbaySearch class
- Yandex using YandexSearch class
- HomeDepot using HomeDepotSearch class
- GoogleScholar using GoogleScholarSearch class
- Youtube using YoutubeSearch class
- Walmart using WalmartSearch
- Apple App Store using AppleAppStoreSearch class
- Naver using NaverSearch class

See the [playground to generate your code.](https://serpapi.com/playground)

## Summary
- [Google Search Results in Python](#google-search-results-in-python)
- [Installation](#installation)
- [Quick start](#quick-start)
- [Summary](#summary)
- [Google Search API capability](#google-search-api-capability)
- [How to set SerpApi key](#how-to-set-serp-api-key)
- [Example by specification](#example-by-specification)
- [Location API](#location-api)
- [Search Archive API](#search-archive-api)
- [Account API](#account-api)
- [Search Bing](#search-bing)
- [Search Baidu](#search-baidu)
- [Search Yandex](#search-yandex)
- [Search Yahoo](#search-yahoo)
- [Search Ebay](#search-ebay)
- [Search Home depot](#search-home-depot)
- [Search Youtube](#search-youtube)
- [Search Google Scholar](#search-google-scholar)
- [Generic search with SerpApiClient](#generic-search-with-serpapiclient)
- [Search Google Images](#search-google-images)
- [Search Google News](#search-google-news)
- [Search Google Shopping](#search-google-shopping)
- [Google Search By Location](#google-search-by-location)
- [Batch Asynchronous Searches](#batch-asynchronous-searches)
- [Python object as a result](#python-object-as-a-result)
- [Python paginate using iterator](#pagination-using-iterator)
- [Error management](#error-management)
- [Change log](#change-log)
- [Conclusion](#conclusion)

### Google Search API capability
Source code.
```python
params = {
"q": "coffee",
"location": "Location Requested",
"device": "desktop|mobile|tablet",
"hl": "Google UI Language",
"gl": "Google Country",
"safe": "Safe Search Flag",
"num": "Number of Results",
"start": "Pagination Offset",
"api_key": "Your SerpApi Key",
# To be match
"tbm": "nws|isch|shop",
# To be search
"tbs": "custom to be search criteria",
# allow async request
"async": "true|false",
# output format
"output": "json|html"
}

# define the search search
search = GoogleSearch(params)
# override an existing parameter
search.params_dict["location"] = "Portland"
# search format return as raw html
html_results = search.get_html()
# parse results
# as python Dictionary
dict_results = search.get_dict()
# as JSON using json package
json_results = search.get_json()
# as dynamic Python object
object_result = search.get_object()
```
[Link to the full documentation](https://serpapi.com/search-api)

See below for more hands-on examples.

### How to set SerpApi key

You can get an API key here if you don't already have one: https://serpapi.com/users/sign_up

The SerpApi `api_key` can be set globally:
```python
GoogleSearch.SERP_API_KEY = "Your Private Key"
```
The SerpApi `api_key` can be provided for each search:
```python
query = GoogleSearch({"q": "coffee", "serp_api_key": "Your Private Key"})
```

### Example by specification

We love true open source, continuous integration and Test Driven Development (TDD).
We are using RSpec to test [our infrastructure around the clock](https://travis-ci.org/serpapi/google-search-results-python) to achieve the best Quality of Service (QoS).

The directory test/ includes specification/examples.

Set your API key.
```bash
export API_KEY="your secret key"
```

Run test
```python
make test
```

### Location API

```python
from serpapi import GoogleSearch
search = GoogleSearch({})
location_list = search.get_location("Austin", 3)
print(location_list)
```

This prints the first 3 locations matching Austin (Texas, Texas, Rochester).
```python
[ { 'canonical_name': 'Austin,TX,Texas,United States',
'country_code': 'US',
'google_id': 200635,
'google_parent_id': 21176,
'gps': [-97.7430608, 30.267153],
'id': '585069bdee19ad271e9bc072',
'keys': ['austin', 'tx', 'texas', 'united', 'states'],
'name': 'Austin, TX',
'reach': 5560000,
'target_type': 'DMA Region'},
...]
```

### Search Archive API

The search results are stored in a temporary cache.
The previous search can be retrieved from the cache for free.

```python
from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
search_result = search.get_dictionary()
assert search_result.get("error") == None
search_id = search_result.get("search_metadata").get("id")
print(search_id)
```

Now let's retrieve the previous search from the archive.

```python
archived_search_result = GoogleSearch({}).get_search_archive(search_id, 'json')
print(archived_search_result.get("search_metadata").get("id"))
```
This prints the search result from the archive.

### Account API
```python
from serpapi import GoogleSearch
search = GoogleSearch({})
account = search.get_account()
```
This prints your account information.

### Search Bing
```python
from serpapi import BingSearch
search = BingSearch({"q": "Coffee", "location": "Austin,Texas"})
data = search.get_dict()
```
This code prints Bing search results for coffee as a Dictionary.

https://serpapi.com/bing-search-api

### Search Baidu
```python
from serpapi import BaiduSearch
search = BaiduSearch({"q": "Coffee"})
data = search.get_dict()
```
This code prints Baidu search results for coffee as a Dictionary.
https://serpapi.com/baidu-search-api

### Search Yandex
```python
from serpapi import YandexSearch
search = YandexSearch({"text": "Coffee"})
data = search.get_dict()
```
This code prints Yandex search results for coffee as a Dictionary.

https://serpapi.com/yandex-search-api

### Search Yahoo
```python
from serpapi import YahooSearch
search = YahooSearch({"p": "Coffee"})
data = search.get_dict()
```
This code prints Yahoo search results for coffee as a Dictionary.

https://serpapi.com/yahoo-search-api

### Search eBay
```python
from serpapi import EbaySearch
search = EbaySearch({"_nkw": "Coffee"})
data = search.get_dict()
```
This code prints eBay search results for coffee as a Dictionary.

https://serpapi.com/ebay-search-api

### Search Home Depot
```python
from serpapi import HomeDepotSearch
search = HomeDepotSearch({"q": "chair"})
data = search.get_dict()
```
This code prints Home Depot search results for chair as Dictionary.

https://serpapi.com/home-depot-search-api

### Search Youtube
```python
from serpapi import YoutubeSearch
search = YoutubeSearch({"q": "chair"})
data = search.get_dict()
```
This code prints Youtube search results for chair as Dictionary.

https://serpapi.com/youtube-search-api

### Search Google Scholar
```python
from serpapi import GoogleScholarSearch
search = GoogleScholarSearch({"q": "Coffee"})
data = search.get_dict()
```
This code prints Google Scholar search results.

### Search Walmart
```python
from serpapi import WalmartSearch
search = WalmartSearch({"query": "chair"})
data = search.get_dict()
```
This code prints Walmart search results.

### Search Youtube
```python
from serpapi import YoutubeSearch
search = YoutubeSearch({"search_query": "chair"})
data = search.get_dict()
```
This code prints Youtube search results.

### Search Apple App Store
```python
from serpapi import AppleAppStoreSearch
search = AppleAppStoreSearch({"term": "Coffee"})
data = search.get_dict()
```
This code prints Apple App Store search results.

### Search Naver
```python
from serpapi import NaverSearch
search = NaverSearch({"query": "chair"})
data = search.get_dict()
```
This code prints Naver search results.

### Generic search with SerpApiClient
```python
from serpapi import SerpApiClient
query = {"q": "Coffee", "location": "Austin,Texas", "engine": "google"}
search = SerpApiClient(query)
data = search.get_dict()
```
This class enables interaction with any search engine supported by SerpApi.com

### Search Google Images

```python
from serpapi import GoogleSearch
search = GoogleSearch({"q": "coffe", "tbm": "isch"})
for image_result in search.get_dict()['images_results']:
link = image_result["original"]
try:
print("link: " + link)
# wget.download(link, '.')
except:
pass
```

This code prints all the image links,
and downloads the images if you un-comment the line with wget (Linux/OS X tool to download files).

This tutorial covers more ground on this topic.
https://github.com/serpapi/showcase-serpapi-tensorflow-keras-image-training

### Search Google News

```python
from serpapi import GoogleSearch
search = GoogleSearch({
"q": "coffe", # search search
"tbm": "nws", # news
"tbs": "qdr:d", # last 24h
"num": 10
})
for offset in [0,1,2]:
search.params_dict["start"] = offset * 10
data = search.get_dict()
for news_result in data['news_results']:
print(str(news_result['position'] + offset * 10) + " - " + news_result['title'])
```

This script prints the first 3 pages of the news headlines for the last 24 hours.

### Search Google Shopping

```python
from serpapi import GoogleSearch
search = GoogleSearch({
"q": "coffe", # search search
"tbm": "shop", # shopping
"tbs": "p_ord:rv", # ordered by review
"num": 100
})
data = search.get_dict()
for shopping_result in data['shopping_results']:
print(shopping_result['position']) + " - " + shopping_result['title'])

```

This script prints all the shopping results, ordered by review order.

### Google Search By Location

With SerpApi, we can build a Google search from anywhere in the world.
This code looks for the best coffee shop for the given cities.

```python
from serpapi import GoogleSearch
for city in ["new york", "paris", "berlin"]:
location = GoogleSearch({}).get_location(city, 1)[0]["canonical_name"]
search = GoogleSearch({
"q": "best coffee shop", # search search
"location": location,
"num": 1,
"start": 0
})
data = search.get_dict()
top_result = data["organic_results"][0]["title"]
```

### Batch Asynchronous Searches

We offer two ways to boost your searches thanks to the`async` parameter.
- Blocking - async=false - more compute intensive because the search needs to maintain many connections. (default)
- Non-blocking - async=true - the way to go for large batches of queries (recommended)

```python
# Operating system
import os

# regular expression library
import re

# safe queue (named Queue in python2)
from queue import Queue

# Time utility
import time

# SerpApi search
from serpapi import GoogleSearch

# store searches
search_queue = Queue()

# SerpApi search
search = GoogleSearch({
"location": "Austin,Texas",
"async": True,
"api_key": os.getenv("API_KEY")
})

# loop through a list of companies
for company in ['amd', 'nvidia', 'intel']:
print("execute async search: q = " + company)
search.params_dict["q"] = company
result = search.get_dict()
if "error" in result:
print("oops error: ", result["error"])
continue
print("add search to the queue where id: ", result['search_metadata'])
# add search to the search_queue
search_queue.put(result)

print("wait until all search statuses are cached or success")

# Create regular search
while not search_queue.empty():
result = search_queue.get()
search_id = result['search_metadata']['id']

# retrieve search from the archive - blocker
print(search_id + ": get search from archive")
search_archived = search.get_search_archive(search_id)
print(search_id + ": status = " +
search_archived['search_metadata']['status'])

# check status
if re.search('Cached|Success',
search_archived['search_metadata']['status']):
print(search_id + ": search done with q = " +
search_archived['search_parameters']['q'])
else:
# requeue search_queue
print(search_id + ": requeue search")
search_queue.put(result)

# wait 1s
time.sleep(1)

print('all searches completed')
```

This code shows how to run searches asynchronously.
The search parameters must have {async: True}. This indicates that the client shouldn't wait for the search to be completed.
The current thread that executes the search is now non-blocking, which allows it to execute thousands of searches in seconds. The SerpApi backend will do the processing work.
The actual search result is deferred to a later call from the search archive using get_search_archive(search_id).
In this example the non-blocking searches are persisted in a queue: search_queue.
A loop through the search_queue allows it to fetch individual search results.
This process can easily be multithreaded to allow a large number of concurrent search requests.
To keep things simple, this example only explores search results one at a time (single threaded).

[See example.](https://github.com/serpapi/google-search-results-python/blob/master/tests/test_example.py)

### Python object as a result

The search results can be automatically wrapped in dynamically generated Python object.
This solution offers a more dynamic, fully Oriented Object Programming approach over the regular Dictionary / JSON data structure.

```python
from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
r = search.get_object()
assert type(r.organic_results) == list
assert r.organic_results[0].title
assert r.search_metadata.id
assert r.search_metadata.google_url
assert r.search_parameters.q, "Coffee"
assert r.search_parameters.engine, "google"
```

### Pagination using iterator
Let's collect links across multiple search results pages.
```python
# to get 2 pages
start = 0
end = 40
page_size = 10

# basic search parameters
parameter = {
"q": "coca cola",
"tbm": "nws",
"api_key": os.getenv("API_KEY"),
# optional pagination parameter
# the pagination method can take argument directly
"start": start,
"end": end,
"num": page_size
}

# as proof of concept
# urls collects
urls = []

# initialize a search
search = GoogleSearch(parameter)

# create a python generator using parameter
pages = search.pagination()
# or set custom parameter
pages = search.pagination(start, end, page_size)

# fetch one search result per iteration
# using a basic python for loop
# which invokes python iterator under the hood.
for page in pages:
print(f"Current page: {page['serpapi_pagination']['current']}")
for news_result in page["news_results"]:
print(f"Title: {news_result['title']}\nLink: {news_result['link']}\n")
urls.append(news_result['link'])

# check if the total number pages is as expected
# note: the exact number if variable depending on the search engine backend
if len(urls) == (end - start):
print("all search results count match!")
if len(urls) == len(set(urls)):
print("all search results are unique!")
```

Examples to fetch links with pagination: [test file](https://github.com/serpapi/google-search-results-python/blob/master/tests/test_example_paginate.py), [online IDE](https://replit.com/@DimitryZub1/Scrape-Google-News-with-Pagination-python-serpapi)

### Error management

SerpApi keeps error management simple.
- backend service error or search fail
- client error

If it's a backend error, a simple error message is returned as string in the server response.
```python
from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas", "api_key": ""})
data = search.get_json()
assert data["error"] == None
```
In some cases, there are more details available in the data object.

If it's a client error, then a SerpApiClientException is raised.

## Change log
2023-03-10 @ 2.4.2
- Change long description to README.md

2021-12-22 @ 2.4.1
- add more search engine
- youtube
- walmart
- apple_app_store
- naver
- raise SerpApiClientException instead of raw string in order to follow Python guideline 3.5+
- add more unit error tests for serp_api_client

2021-07-26 @ 2.4.0
- add page size support using num parameter
- add youtube search engine

2021-06-05 @ 2.3.0
- add pagination support

2021-04-28 @ 2.2.0
- add get_response method to provide raw requests.Response object

2021-04-04 @ 2.1.0
- Add home depot search engine
- get_object() returns dynamic Python object

2020-10-26 @ 2.0.0
- Reduce class name to Search
- Add get_raw_json

2020-06-30 @ 1.8.3
- simplify import
- improve package for python 3.5+
- add support for python 3.5 and 3.6

2020-03-25 @ 1.8
- add support for Yandex, Yahoo, Ebay
- clean-up test

2019-11-10 @ 1.7.1
- increase engine parameter priority over engine value set in the class

2019-09-12 @ 1.7
- Change namespace "from lib." instead: "from serpapi import GoogleSearch"
- Support for Bing and Baidu

2019-06-25 @ 1.6
- New search engine supported: Baidu and Bing

## Conclusion
SerpApi supports all the major search engines. Google has the more advance support with all the major services available: Images, News, Shopping and more..
To enable a type of search, the field tbm (to be matched) must be set to:

* isch: Google Images API.
* nws: Google News API.
* shop: Google Shopping API.
* any other Google service should work out of the box.
* (no tbm parameter): regular Google search.

The field `tbs` allows to customize the search even more.

[The full documentation is available here.](https://serpapi.com/search-api)