Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sforaidl/kd_lib

A Pytorch Knowledge Distillation library for benchmarking and extending works in the domains of Knowledge Distillation, Pruning, and Quantization.
https://github.com/sforaidl/kd_lib

algorithm-implementations benchmarking data-science deep-learning-library knowledge-distillation machine-learning model-compression pruning pytorch quantization

Last synced: 4 days ago
JSON representation

A Pytorch Knowledge Distillation library for benchmarking and extending works in the domains of Knowledge Distillation, Pruning, and Quantization.

Awesome Lists containing this project

README

        

KD-Lib


A PyTorch model compression library containing easy-to-use methods for knowledge distillation, pruning, and quantization

[![Downloads](https://pepy.tech/badge/kd-lib)](https://pepy.tech/project/kd-lib)
[![Tests](https://github.com/SforAiDl/KD_Lib/actions/workflows/python-package-test.yml/badge.svg)](https://github.com/SforAiDl/KD_Lib/actions/workflows/python-package-test.yml)
[![Docs](https://readthedocs.org/projects/kd-lib/badge/?version=latest)](https://kd-lib.readthedocs.io/en/latest/?badge=latest)

**[Documentation](https://kd-lib.readthedocs.io/en/latest/)** | **[Tutorials](https://kd-lib.readthedocs.io/en/latest/usage/tutorials/index.html)**

## Installation

### From source (recommended)

```shell

https://github.com/SforAiDl/KD_Lib.git
cd KD_Lib
python setup.py install

```

### From PyPI

```shell

pip install KD-Lib

```

## Example usage

To implement the most basic version of knowledge distillation from [Distilling the Knowledge in a Neural Network](https://arxiv.org/abs/1503.02531) and plot loss curves:

```python

import torch
import torch.optim as optim
from torchvision import datasets, transforms
from KD_Lib.KD import VanillaKD

# This part is where you define your datasets, dataloaders, models and optimizers

train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"mnist_data",
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=32,
shuffle=True,
)

test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"mnist_data",
train=False,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=32,
shuffle=True,
)

teacher_model =
student_model =

teacher_optimizer = optim.SGD(teacher_model.parameters(), 0.01)
student_optimizer = optim.SGD(student_model.parameters(), 0.01)

# Now, this is where KD_Lib comes into the picture

distiller = VanillaKD(teacher_model, student_model, train_loader, test_loader,
teacher_optimizer, student_optimizer)
distiller.train_teacher(epochs=5, plot_losses=True, save_model=True) # Train the teacher network
distiller.train_student(epochs=5, plot_losses=True, save_model=True) # Train the student network
distiller.evaluate(teacher=False) # Evaluate the student network
distiller.get_parameters() # A utility function to get the number of
# parameters in the teacher and the student network

```

To train a collection of 3 models in an online fashion using the framework in [Deep Mutual Learning](https://arxiv.org/abs/1706.00384)
and log training details to Tensorboard:

```python

import torch
import torch.optim as optim
from torchvision import datasets, transforms
from KD_Lib.KD import DML
from KD_Lib.models import ResNet18, ResNet50 # To use models packaged in KD_Lib

# Define your datasets, dataloaders, models and optimizers

train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"mnist_data",
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=32,
shuffle=True,
)

test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"mnist_data",
train=False,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=32,
shuffle=True,
)

student_params = [4, 4, 4, 4, 4]
student_model_1 = ResNet50(student_params, 1, 10)
student_model_2 = ResNet18(student_params, 1, 10)

student_cohort = [student_model_1, student_model_2]

student_optimizer_1 = optim.SGD(student_model_1.parameters(), 0.01)
student_optimizer_2 = optim.SGD(student_model_2.parameters(), 0.01)

student_optimizers = [student_optimizer_1, student_optimizer_2]

# Now, this is where KD_Lib comes into the picture

distiller = DML(student_cohort, train_loader, test_loader, student_optimizers, log=True, logdir="./logs")

distiller.train_students(epochs=5)
distiller.evaluate()
distiller.get_parameters()

```

## Methods Implemented

Some benchmark results can be found in the [logs](./logs.rst) file.

| Paper / Method | Link | Repository (KD_Lib/) |
| ----------------------------------------------------------|----------------------------------|----------------------|
| Distilling the Knowledge in a Neural Network | https://arxiv.org/abs/1503.02531 | KD/vision/vanilla |
| Improved Knowledge Distillation via Teacher Assistant | https://arxiv.org/abs/1902.03393 | KD/vision/TAKD |
| Relational Knowledge Distillation | https://arxiv.org/abs/1904.05068 | KD/vision/RKD |
| Distilling Knowledge from Noisy Teachers | https://arxiv.org/abs/1610.09650 | KD/vision/noisy |
| Paying More Attention To The Attention | https://arxiv.org/abs/1612.03928 | KD/vision/attention |
| Revisit Knowledge Distillation: a Teacher-free
Framework | https://arxiv.org/abs/1909.11723 |KD/vision/teacher_free|
| Mean Teachers are Better Role Models | https://arxiv.org/abs/1703.01780 |KD/vision/mean_teacher|
| Knowledge Distillation via Route Constrained
Optimization | https://arxiv.org/abs/1904.09149 | KD/vision/RCO |
| Born Again Neural Networks | https://arxiv.org/abs/1805.04770 | KD/vision/BANN |
| Preparing Lessons: Improve Knowledge Distillation
with Better Supervision | https://arxiv.org/abs/1911.07471 | KD/vision/KA |
| Improving Generalization Robustness with Noisy
Collaboration in Knowledge Distillation | https://arxiv.org/abs/1910.05057 | KD/vision/noisy|
| Distilling Task-Specific Knowledge from BERT into
Simple Neural Networks | https://arxiv.org/abs/1903.12136 | KD/text/BERT2LSTM |
| Deep Mutual Learning | https://arxiv.org/abs/1706.00384 | KD/vision/DML |
| The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks | https://arxiv.org/abs/1803.03635 | Pruning/lottery_tickets|
| Regularizing Class-wise Predictions via
Self-knowledge Distillation | https://arxiv.org/abs/2003.13964 | KD/vision/CSDK |


Please cite our pre-print if you find `KD-Lib` useful in any way :)

```bibtex

@misc{shah2020kdlib,
title={KD-Lib: A PyTorch library for Knowledge Distillation, Pruning and Quantization},
author={Het Shah and Avishree Khare and Neelay Shah and Khizir Siddiqui},
year={2020},
eprint={2011.14691},
archivePrefix={arXiv},
primaryClass={cs.LG}
}

```