An open API service indexing awesome lists of open source software.

https://github.com/shaadclt/multi-agent-system-langgraph

This project demonstrates a multi-agent chatbot system built using LangGraph, LangChain, and Azure OpenAI GPT-4o. It enables intelligent routing of user queries to specialized agents .
https://github.com/shaadclt/multi-agent-system-langgraph

azure-openai langgraph

Last synced: 3 months ago
JSON representation

This project demonstrates a multi-agent chatbot system built using LangGraph, LangChain, and Azure OpenAI GPT-4o. It enables intelligent routing of user queries to specialized agents .

Awesome Lists containing this project

README

          

# šŸ’¬ LangGraph Multi-Agent Chatbot with Azure OpenAI (GPT-4o)

This project demonstrates a **multi-agent chatbot system** built using [LangGraph](https://docs.langchain.com/langgraph/), [LangChain](https://www.langchain.com/), and [Azure OpenAI GPT-4o](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/overview). It enables intelligent routing of user queries to specialized agents that can handle:

- šŸ“¦ Product Q&A (e.g., laptop features, specifications)
- šŸ“‘ Order Management (e.g., order status, updates)
- šŸ’¬ Small Talk (greetings, goodbyes)

The chatbot is designed to operate inside **Google Colab**, using `userdata` for secure credential handling and modular notebooks for agent logic.

---

## šŸš€ Features

- āœ… **Agent Routing with LangGraph**
- šŸ¤– **GPT-4o via Azure OpenAI API**
- šŸ›ļø Product Q&A Agent
- šŸ“¦ Order Management Agent
- šŸ—Øļø Small Talk Handler
- 🧠 Memory Management via `thread_id`
- šŸ“ˆ Visualize Agent Flow using Mermaid.js

---

## šŸ“ Project Structure

```text
ā”œā”€ā”€ product_qna_agentic_chatbot.ipynb # Defines Product QnA agent
ā”œā”€ā”€ orders_chatbot_custom_agent_langgraph.ipynb # Defines Order management agent
ā”œā”€ā”€ multi_agent_system_langgraph.ipynb # Main router agent and orchestrator
ā”œā”€ā”€ README.md # You are here
```

## šŸ”§ Setup Instructions
### 1. Clone the Repository

```bash
git clone https://github.com/shaadclt/Multi-Agent-System-LangGraph.git
cd Multi-Agent-System-LangGraph
```
### 2. Open `multi_agent_system_langgraph.ipynb` in Google Colab

### 3. Add Azure Credentials to Colab userdata

```python
import os
from google.colab import userdata

os.environ["AZURE_OPENAI_API_KEY"] = userdata.get('AZURE_OPENAI_API_KEY')
os.environ["AZURE_OPENAI_ENDPOINT"] = userdata.get('AZURE_OPENAI_ENDPOINT')
```

### 4. Run the Notebook Cells

## 🧠 Conversation Flow Example
```text

USER : How are you doing?

AGENT : Hello! I’m here to assist you with laptop features or order updates.

USER : Please show me the details of the order ORD-7311

AGENT : Your order ORD-7311 is currently being processed and will ship soon.

USER : Tell me about the features of SpectraBook laptop

AGENT : SpectraBook features include a 13ā€ OLED display, 16GB RAM, and a 512GB SSD.
```

## 🧱 Built With
- LangGraph

- LangChain

- Azure OpenAI

- Python 3.10+

- Google Colab

## šŸ“œ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE.txt) file for details.

## ✨ Acknowledgements
Thanks to:

- LangChain & LangGraph Teams

- Microsoft Azure OpenAI

- OpenAI GPT-4o for powering intelligent conversations