Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shagunsodhani/pregel
Tensorflow implementation of Graph Convolutional Network
https://github.com/shagunsodhani/pregel
graph-convolutional-network tensorflow
Last synced: 3 months ago
JSON representation
Tensorflow implementation of Graph Convolutional Network
- Host: GitHub
- URL: https://github.com/shagunsodhani/pregel
- Owner: shagunsodhani
- License: mit
- Created: 2017-11-08T20:58:16.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2020-10-26T01:44:48.000Z (about 4 years ago)
- Last Synced: 2024-07-04T02:18:39.927Z (4 months ago)
- Topics: graph-convolutional-network, tensorflow
- Language: Python
- Size: 5.19 MB
- Stars: 77
- Watchers: 6
- Forks: 10
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# pregel
Tensorflow implementation of Graph Convolutional Network## Setup
* `sudo pip3 install -r requirements.txt`
## Run
* `python3 main.py -h` to view all the config parameters. Update the default parameters in the `main.py` file.
* `python3 main.py` to run the models.
* `tensorboard --logdir=run1: -port 6006` to run tensorboard and go to `http://localhost/6006`## References
This work is an attempt to reproduce some of the works related to graph convolutional networks:
#### [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907)
```
@article{kipf2016semi,
title={Semi-Supervised Classification with Graph Convolutional Networks},
author={Kipf, Thomas N and Welling, Max},
journal={arXiv preprint arXiv:1609.02907},
year={2016}
}
```* [Author's implementation in Tensorflow](https://github.com/tkipf/gcn)
* [Author's implementation in Keras](https://github.com/tkipf/keras-gcn)
* [Author's implementation in PyTorch](https://github.com/tkipf/pygcn)#### [Variational Graph Auto-Encoders](https://arxiv.org/abs/1611.07308)
```
@article{hamilton2017representation,
title={Representation Learning on Graphs: Methods and Applications},
author={Hamilton, William L and Ying, Rex and Leskovec, Jure},
journal={arXiv preprint arXiv:1709.05584},
year={2017}
}
```* [Author's implementation in Tensorflow](https://github.com/tkipf/gae)