Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shamil-t/under_water-image-enhancement
under water image enhancement and restoration with reef classifcation
https://github.com/shamil-t/under_water-image-enhancement
clahe dataset dcp django heroku-app image-restoration mip noises python3 quality rayleigh-distribution underwater-images water-image
Last synced: 19 days ago
JSON representation
under water image enhancement and restoration with reef classifcation
- Host: GitHub
- URL: https://github.com/shamil-t/under_water-image-enhancement
- Owner: shamil-t
- Created: 2021-02-01T14:45:21.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2022-04-30T16:39:23.000Z (over 2 years ago)
- Last Synced: 2024-10-08T01:23:23.025Z (30 days ago)
- Topics: clahe, dataset, dcp, django, heroku-app, image-restoration, mip, noises, python3, quality, rayleigh-distribution, underwater-images, water-image
- Language: Python
- Homepage: https://under-water-image-enhancement.herokuapp.com/
- Size: 4.69 MB
- Stars: 5
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ππ ½π ³π ΄π ππ °ππ ΄π π Έπ Όπ °π Άπ ΄ π ΄π ½π °π ½π ²π ΄π Όπ ΄π ½π π °π ½π ³π ³ ππ ΄πππ Ύππ °ππ Έπ Ύπ ½ : ππ ΄π ΄π ΅ π ²π »π °πππ Έπ ΅π Έπ ²π °ππ Έπ Ύπ ½
The main objective of the Project is to reduce the noises in the Underwater Images.
We propose some methods for efficient removal of Noises using Image Processing
Techniques.
The Underwater images have low quality which makes it a difficult process to analyze
the images. Here we propose Image Enhancement and Image Restoration process for
increasing the quality of Underwater Images. Clahe, Reyleigh distribution, DCP and
MIP,RGHS,ULAP methods are used in this project.### IMAGE ENHANCEMENT
- CLAHE - CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION
- RAYLEIGH DISTRIBUTION
- RGHS - Relative Global Histogram Stretching### IMAGE RESTORATION
- DCP - DARK CHANNEL PRIOR
- MIP - MAXIMUM INTENSITY PROJECTION
- ULAP - Underwater Light Attenuation Prior## π Ώππ ΄ ππ ΄πππ ΄πππ Έπ ΄π
### Environment Setup
- python 3.8.6 64bit
- install dependencies `$ pip install -r requirements.txt`
- download models from [here](https://drive.google.com/drive/folders/1euqJMjlMuDJpLOWRTrMhzEG_RH62cdiw?usp=sharing "link title"), place it in models folder`/UWIE/CLASSIFY/models/`### Dataset
- Pocillopora
- Acropora
- Turf[Download DataSet from here](http://vision.ucsd.edu/~beijbom/moorea_labeled_corals/patches/)
## π ·π Ύππ ππ Ύ πππ ½
`$ py manage.py runserver`
Demo project hosted on heroku [link](https://under-water-image-enhancement.herokuapp.com/)