Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shaoyijia/cmg
Code for ECML-PKDD 2022 Paper --- CMG: A Class-Mixed Generation Approach to Out-of-Distribution Detection
https://github.com/shaoyijia/cmg
anomaly-detection data-generation novelty-detection out-of-distribution-detection
Last synced: about 2 months ago
JSON representation
Code for ECML-PKDD 2022 Paper --- CMG: A Class-Mixed Generation Approach to Out-of-Distribution Detection
- Host: GitHub
- URL: https://github.com/shaoyijia/cmg
- Owner: shaoyijia
- Created: 2022-06-26T09:49:27.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-10-12T00:17:31.000Z (about 2 years ago)
- Last Synced: 2023-03-10T04:41:25.652Z (almost 2 years ago)
- Topics: anomaly-detection, data-generation, novelty-detection, out-of-distribution-detection
- Language: Python
- Homepage:
- Size: 334 KB
- Stars: 5
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# CMG: A Class-Mixed Generation Approach to Out-of-Distribution Detection
This repository contains the code for our ECML'22 paper [CMG: A Class-Mixed Generation Approach to Out-of-Distribution
Detection](https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_531.pdf) by Mengyu Wang*, Yijia Shao*, Haowei Lin, Wenpeng Hu, and Bing Liu.## Overview
We propose CMG (*Class-Mixed Generation*) for efficient out-of-distribution (OOD) detection. CMG uses CVAE to generate
pseudo-OOD training samples based on class-mixed information in the latent space. The pseudo-OOD data are used to
fine-tune a classifier in a 2-stage manner. By using different loss functions, we propose two versions of the CMG
system, CMG-softmax (CMG-s) and CMG-energy (CMG-e). The figure below illustrates our CMG system.## Requirements
### Environments
The required packages are as follows:
- python 3.5
- torch 1.2
- torchvision 0.4
- CUDA 10.0
- scikit-learn 0.22### Datasets
For Setting 1 - OOD Detection on the Same Dataset, this repository supports MNIST and CIFAR10 which can be directly
downloaded through `torchvision`.For Setting 2 - OOD Detection on Different Datasets, this repository supports CIFAR10 as IND data and SVHN / LSUN /
tinyImageNet / LSUN-FIX / ImageNet-FIX / CIFAR-100 as OOD data. SVHN and CIFAR 100 can be directly downloaded
through `torchvision`. The remaining data have been processed by the CSI paper and you can download
them [here](https://github.com/alinlab/CSI).Please download datasets to [./datasets](./datasets) and rename the file. See [./datasets/datasetsHelper.py](./datasets/datasetsHelper.py) and our paper for more details.
## Training CMG
### CMG Stage 1
CMG Stage 1 involves IND classifier building and CVAE training.
The standard code is running with a single GPU and you can assign a specific GPU in the command line.
For more details, please view [utils.py](./utils.py).
#### Train IND classifier
To train IND classifier on MNIST for Setting 1, run this command:
```
python -m train \
--task 'same_dataset_mnist' \
--partition {'partition1'/'partition2'/'partition3'/'partition4'/'partition5'} \
--command 'train_classifier' \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {checkpoint name, e.g., './ckpt/main_model_partition1.pkl'}
```To train IND classifier on CIFAR10 for Setting 1, run this command:
```
python -m train \
--task 'same_dataset_cifar10' \
--partition {'partition1'/'partition2'/'partition3'/'partition4'/'partition5'} \
--command 'train_classifier' \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {checkpoint name, e.g., './ckpt/main_model_partition1.pkl'}
```To train IND classifier on CIFAR10 for Setting 2, run this command:
```
python -m train \
--task 'different_dataset' \
--command 'train_classifier' \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {checkpoint name, e.g., './ckpt/main_model_different_dataset.pkl'}
```#### Train CVAE
To train CVAE on MNIST for Setting 1, run this command:
```
python -m train \
--task 'same_dataset_mnist' \
--partition {'partition1'/'partition2'/'partition3'/'partition4'/'partition5'} \
--command 'train_cvae' \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {checkpoint name, e.g., './ckpt/cvae_partition1.pkl'}
```To train CVAE on CIFAR10 for Setting 1, run this command:
```
python -m train \
--task 'same_dataset_cifar10' \
--partition {'partition1'/'partition2'/'partition3'/'partition4'/'partition5'} \
--command 'train_cvae' \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {checkpoint name, e.g., './ckpt/cvae_partition1.pkl'}
```To train CVAE on CIFAR10 for Setting 2, run this command:
```
python -m train \
--task 'different_dataset' \
--command 'train_cvae' \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {checkpoint name, e.g., './ckpt/cvae_different_dataset.pkl'}
```### CMG Stage 2 and Evaluation
To perform CMG Stage 2 and get the final result on MNIST for Setting 1, run this command:
```
python -m eval \
--task 'same_dataset_mnist' \
--partition {'partition1'/'partition2'/'partition3'/'partition4'/'partition5'} \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {main model checkpoint name} \
--params-dict-name2 {cvae checkpoint name} \
--mode {'CMG-energy'/'CMG-softmax'}
```To perform CMG Stage 2 and get the final result on CIFAR10 for Setting 1, run this command:
```
python -m eval \
--task 'same_dataset_cifar10' \
--partition {'partition1'/'partition2'/'partition3'/'partition4'/'partition5'} \
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {main model checkpoint name} \
--params-dict-name2 {cvae checkpoint name} \
--mode {'CMG-energy'/'CMG-softmax'}
```To perform CMG Stage 2 and get the final result on CIFAR10 for Setting 2, run this command:
```
python -m eval \
--task 'different_dataset' \
--ood-dataset {'SVHN'/'LSUN'/'LSUN-FIX'/'tinyImageNet'/'ImageNet-FIX'/'CIFAR100'}
--device {the available GPU in your cluser, e.g., cuda:0} \
--params-dict-name {main model checkpoint name} \
--params-dict-name2 {cvae checkpoint name} \
--mode {'CMG-energy'/'CMG-softmax'}
```## Apply CMG to CSI
CMG is a training paradigm orthogonal to existing OOD detection models and can enhance existing systems to further
improve their performance (please see our paper for details).Here we also provide codes to reproduce the new SOTA by applying CMG to [CSI](https://github.com/alinlab/CSI).
See [./CSI+CMG](./CSI+CMG).## Acknowledgements
We thank [CSI](https://github.com/alinlab/CSI) for providing downloaded links for their processed data and our "CSI+CMG"
code is also based on their implementation.## Citation
Please cite our paper if you use this code of parts of it:
```
@article{wangcmg,
title={CMG: A Class-Mixed Generation Approach to Out-of-Distribution Detection},
author={Wang, Mengyu and Shao, Yijia and Lin, Haowei and Hu, Wenpeng and Liu, Bing}
```