Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/shaqian/flutter_tflite

Flutter plugin for TensorFlow Lite
https://github.com/shaqian/flutter_tflite

dart flutter tensorflow tensorflowlite

Last synced: 6 days ago
JSON representation

Flutter plugin for TensorFlow Lite

Awesome Lists containing this project

README

        

# tflite

A Flutter plugin for accessing TensorFlow Lite API. Supports image classification, object detection ([SSD](https://github.com/tensorflow/models/tree/master/research/object_detection) and [YOLO](https://pjreddie.com/darknet/yolov2/)), [Pix2Pix](https://phillipi.github.io/pix2pix/) and [Deeplab](https://github.com/tensorflow/models/tree/master/research/deeplab) and [PoseNet](https://www.tensorflow.org/lite/models/pose_estimation/overview) on both iOS and Android.

### Table of Contents

- [Installation](#Installation)
- [Usage](#Usage)
- [Image Classification](#Image-Classification)
- [Object Detection](#Object-Detection)
- [SSD MobileNet](#SSD-MobileNet)
- [YOLO](#Tiny-YOLOv2)
- [Pix2Pix](#Pix2Pix)
- [Deeplab](#Deeplab)
- [PoseNet](#PoseNet)
- [Example](#Example)
- [Prediction in Static Images](#Prediction-in-Static-Images)
- [Real-time Detection](#Real-time-Detection)

### Breaking changes

#### Since 1.1.0:

1. iOS TensorFlow Lite library is upgraded from TensorFlowLite 1.x to TensorFlowLiteObjC 2.x. Changes to native code are denoted with `TFLITE2`.

#### Since 1.0.0:

1. Updated to TensorFlow Lite API v1.12.0.
2. No longer accepts parameter `inputSize` and `numChannels`. They will be retrieved from input tensor.
3. `numThreads` is moved to `Tflite.loadModel`.

## Installation

Add `tflite` as a [dependency in your pubspec.yaml file](https://flutter.io/using-packages/).

### Android

In `android/app/build.gradle`, add the following setting in `android` block.

```
aaptOptions {
noCompress 'tflite'
noCompress 'lite'
}
```

### iOS

Solutions to build errors on iOS:

* 'vector' file not found"

Open `ios/Runner.xcworkspace` in Xcode, click Runner > Tagets > Runner > Build Settings, search `Compile Sources As`, change the value to `Objective-C++`

* 'tensorflow/lite/kernels/register.h' file not found

The plugin assumes the tensorflow header files are located in path "tensorflow/lite/kernels".

However, for early versions of tensorflow the header path is "tensorflow/contrib/lite/kernels".

Use `CONTRIB_PATH` to toggle the path. Uncomment `//#define CONTRIB_PATH` from here:
https://github.com/shaqian/flutter_tflite/blob/master/ios/Classes/TflitePlugin.mm#L1

## Usage

1. Create a `assets` folder and place your label file and model file in it. In `pubspec.yaml` add:

```
assets:
- assets/labels.txt
- assets/mobilenet_v1_1.0_224.tflite
```

2. Import the library:

```dart
import 'package:tflite/tflite.dart';
```

3. Load the model and labels:

```dart
String res = await Tflite.loadModel(
model: "assets/mobilenet_v1_1.0_224.tflite",
labels: "assets/labels.txt",
numThreads: 1, // defaults to 1
isAsset: true, // defaults to true, set to false to load resources outside assets
useGpuDelegate: false // defaults to false, set to true to use GPU delegate
);
```

4. See the section for the respective model below.

5. Release resources:

```
await Tflite.close();
```

### GPU Delegate

When using GPU delegate, refer to [this step](https://www.tensorflow.org/lite/performance/gpu#step_5_release_mode) for release mode setting to get better performance.

### Image Classification

- Output format:
```
{
index: 0,
label: "person",
confidence: 0.629
}
```

- Run on image:

```dart
var recognitions = await Tflite.runModelOnImage(
path: filepath, // required
imageMean: 0.0, // defaults to 117.0
imageStd: 255.0, // defaults to 1.0
numResults: 2, // defaults to 5
threshold: 0.2, // defaults to 0.1
asynch: true // defaults to true
);
```

- Run on binary:

```dart
var recognitions = await Tflite.runModelOnBinary(
binary: imageToByteListFloat32(image, 224, 127.5, 127.5),// required
numResults: 6, // defaults to 5
threshold: 0.05, // defaults to 0.1
asynch: true // defaults to true
);

Uint8List imageToByteListFloat32(
img.Image image, int inputSize, double mean, double std) {
var convertedBytes = Float32List(1 * inputSize * inputSize * 3);
var buffer = Float32List.view(convertedBytes.buffer);
int pixelIndex = 0;
for (var i = 0; i < inputSize; i++) {
for (var j = 0; j < inputSize; j++) {
var pixel = image.getPixel(j, i);
buffer[pixelIndex++] = (img.getRed(pixel) - mean) / std;
buffer[pixelIndex++] = (img.getGreen(pixel) - mean) / std;
buffer[pixelIndex++] = (img.getBlue(pixel) - mean) / std;
}
}
return convertedBytes.buffer.asUint8List();
}

Uint8List imageToByteListUint8(img.Image image, int inputSize) {
var convertedBytes = Uint8List(1 * inputSize * inputSize * 3);
var buffer = Uint8List.view(convertedBytes.buffer);
int pixelIndex = 0;
for (var i = 0; i < inputSize; i++) {
for (var j = 0; j < inputSize; j++) {
var pixel = image.getPixel(j, i);
buffer[pixelIndex++] = img.getRed(pixel);
buffer[pixelIndex++] = img.getGreen(pixel);
buffer[pixelIndex++] = img.getBlue(pixel);
}
}
return convertedBytes.buffer.asUint8List();
}
```

- Run on image stream (video frame):

> Works with [camera plugin 4.0.0](https://pub.dartlang.org/packages/camera). Video format: (iOS) kCVPixelFormatType_32BGRA, (Android) YUV_420_888.

```dart
var recognitions = await Tflite.runModelOnFrame(
bytesList: img.planes.map((plane) {return plane.bytes;}).toList(),// required
imageHeight: img.height,
imageWidth: img.width,
imageMean: 127.5, // defaults to 127.5
imageStd: 127.5, // defaults to 127.5
rotation: 90, // defaults to 90, Android only
numResults: 2, // defaults to 5
threshold: 0.1, // defaults to 0.1
asynch: true // defaults to true
);
```

### Object Detection

- Output format:

`x, y, w, h` are between [0, 1]. You can scale `x, w` by the width and `y, h` by the height of the image.

```
{
detectedClass: "hot dog",
confidenceInClass: 0.123,
rect: {
x: 0.15,
y: 0.33,
w: 0.80,
h: 0.27
}
}
```

#### SSD MobileNet:

- Run on image:

```dart
var recognitions = await Tflite.detectObjectOnImage(
path: filepath, // required
model: "SSDMobileNet",
imageMean: 127.5,
imageStd: 127.5,
threshold: 0.4, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
asynch: true // defaults to true
);
```

- Run on binary:

```dart
var recognitions = await Tflite.detectObjectOnBinary(
binary: imageToByteListUint8(resizedImage, 300), // required
model: "SSDMobileNet",
threshold: 0.4, // defaults to 0.1
numResultsPerClass: 2, // defaults to 5
asynch: true // defaults to true
);
```

- Run on image stream (video frame):

> Works with [camera plugin 4.0.0](https://pub.dartlang.org/packages/camera). Video format: (iOS) kCVPixelFormatType_32BGRA, (Android) YUV_420_888.

```dart
var recognitions = await Tflite.detectObjectOnFrame(
bytesList: img.planes.map((plane) {return plane.bytes;}).toList(),// required
model: "SSDMobileNet",
imageHeight: img.height,
imageWidth: img.width,
imageMean: 127.5, // defaults to 127.5
imageStd: 127.5, // defaults to 127.5
rotation: 90, // defaults to 90, Android only
numResults: 2, // defaults to 5
threshold: 0.1, // defaults to 0.1
asynch: true // defaults to true
);
```

#### Tiny YOLOv2:

- Run on image:

```dart
var recognitions = await Tflite.detectObjectOnImage(
path: filepath, // required
model: "YOLO",
imageMean: 0.0,
imageStd: 255.0,
threshold: 0.3, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
anchors: anchors, // defaults to [0.57273,0.677385,1.87446,2.06253,3.33843,5.47434,7.88282,3.52778,9.77052,9.16828]
blockSize: 32, // defaults to 32
numBoxesPerBlock: 5, // defaults to 5
asynch: true // defaults to true
);
```

- Run on binary:

```dart
var recognitions = await Tflite.detectObjectOnBinary(
binary: imageToByteListFloat32(resizedImage, 416, 0.0, 255.0), // required
model: "YOLO",
threshold: 0.3, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
anchors: anchors, // defaults to [0.57273,0.677385,1.87446,2.06253,3.33843,5.47434,7.88282,3.52778,9.77052,9.16828]
blockSize: 32, // defaults to 32
numBoxesPerBlock: 5, // defaults to 5
asynch: true // defaults to true
);
```

- Run on image stream (video frame):

> Works with [camera plugin 4.0.0](https://pub.dartlang.org/packages/camera). Video format: (iOS) kCVPixelFormatType_32BGRA, (Android) YUV_420_888.

```dart
var recognitions = await Tflite.detectObjectOnFrame(
bytesList: img.planes.map((plane) {return plane.bytes;}).toList(),// required
model: "YOLO",
imageHeight: img.height,
imageWidth: img.width,
imageMean: 0, // defaults to 127.5
imageStd: 255.0, // defaults to 127.5
numResults: 2, // defaults to 5
threshold: 0.1, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
anchors: anchors, // defaults to [0.57273,0.677385,1.87446,2.06253,3.33843,5.47434,7.88282,3.52778,9.77052,9.16828]
blockSize: 32, // defaults to 32
numBoxesPerBlock: 5, // defaults to 5
asynch: true // defaults to true
);
```

### Pix2Pix

> Thanks to [RP](https://github.com/shaqian/flutter_tflite/pull/18) from [Green Appers](https://github.com/GreenAppers)

- Output format:

The output of Pix2Pix inference is Uint8List type. Depending on the `outputType` used, the output is:

- (if outputType is png) byte array of a png image

- (otherwise) byte array of the raw output

- Run on image:

```dart
var result = await runPix2PixOnImage(
path: filepath, // required
imageMean: 0.0, // defaults to 0.0
imageStd: 255.0, // defaults to 255.0
asynch: true // defaults to true
);
```

- Run on binary:

```dart
var result = await runPix2PixOnBinary(
binary: binary, // required
asynch: true // defaults to true
);
```

- Run on image stream (video frame):

```dart
var result = await runPix2PixOnFrame(
bytesList: img.planes.map((plane) {return plane.bytes;}).toList(),// required
imageHeight: img.height, // defaults to 1280
imageWidth: img.width, // defaults to 720
imageMean: 127.5, // defaults to 0.0
imageStd: 127.5, // defaults to 255.0
rotation: 90, // defaults to 90, Android only
asynch: true // defaults to true
);
```

### Deeplab

> Thanks to [RP](https://github.com/shaqian/flutter_tflite/pull/22) from [see--](https://github.com/see--) for Android implementation.

- Output format:

The output of Deeplab inference is Uint8List type. Depending on the `outputType` used, the output is:

- (if outputType is png) byte array of a png image

- (otherwise) byte array of r, g, b, a values of the pixels

- Run on image:

```dart
var result = await runSegmentationOnImage(
path: filepath, // required
imageMean: 0.0, // defaults to 0.0
imageStd: 255.0, // defaults to 255.0
labelColors: [...], // defaults to https://github.com/shaqian/flutter_tflite/blob/master/lib/tflite.dart#L219
outputType: "png", // defaults to "png"
asynch: true // defaults to true
);
```

- Run on binary:

```dart
var result = await runSegmentationOnBinary(
binary: binary, // required
labelColors: [...], // defaults to https://github.com/shaqian/flutter_tflite/blob/master/lib/tflite.dart#L219
outputType: "png", // defaults to "png"
asynch: true // defaults to true
);
```

- Run on image stream (video frame):

```dart
var result = await runSegmentationOnFrame(
bytesList: img.planes.map((plane) {return plane.bytes;}).toList(),// required
imageHeight: img.height, // defaults to 1280
imageWidth: img.width, // defaults to 720
imageMean: 127.5, // defaults to 0.0
imageStd: 127.5, // defaults to 255.0
rotation: 90, // defaults to 90, Android only
labelColors: [...], // defaults to https://github.com/shaqian/flutter_tflite/blob/master/lib/tflite.dart#L219
outputType: "png", // defaults to "png"
asynch: true // defaults to true
);
```

### PoseNet

> Model is from [StackOverflow thread](https://stackoverflow.com/a/55288616).

- Output format:

`x, y` are between [0, 1]. You can scale `x` by the width and `y` by the height of the image.

```
[ // array of poses/persons
{ // pose #1
score: 0.6324902,
keypoints: {
0: {
x: 0.250,
y: 0.125,
part: nose,
score: 0.9971070
},
1: {
x: 0.230,
y: 0.105,
part: leftEye,
score: 0.9978438
}
......
}
},
{ // pose #2
score: 0.32534285,
keypoints: {
0: {
x: 0.402,
y: 0.538,
part: nose,
score: 0.8798978
},
1: {
x: 0.380,
y: 0.513,
part: leftEye,
score: 0.7090239
}
......
}
},
......
]
```

- Run on image:

```dart
var result = await runPoseNetOnImage(
path: filepath, // required
imageMean: 125.0, // defaults to 125.0
imageStd: 125.0, // defaults to 125.0
numResults: 2, // defaults to 5
threshold: 0.7, // defaults to 0.5
nmsRadius: 10, // defaults to 20
asynch: true // defaults to true
);
```

- Run on binary:

```dart
var result = await runPoseNetOnBinary(
binary: binary, // required
numResults: 2, // defaults to 5
threshold: 0.7, // defaults to 0.5
nmsRadius: 10, // defaults to 20
asynch: true // defaults to true
);
```

- Run on image stream (video frame):

```dart
var result = await runPoseNetOnFrame(
bytesList: img.planes.map((plane) {return plane.bytes;}).toList(),// required
imageHeight: img.height, // defaults to 1280
imageWidth: img.width, // defaults to 720
imageMean: 125.0, // defaults to 125.0
imageStd: 125.0, // defaults to 125.0
rotation: 90, // defaults to 90, Android only
numResults: 2, // defaults to 5
threshold: 0.7, // defaults to 0.5
nmsRadius: 10, // defaults to 20
asynch: true // defaults to true
);
```

## Example

### Prediction in Static Images

Refer to the [example](https://github.com/shaqian/flutter_tflite/tree/master/example).

### Real-time detection

Refer to [flutter_realtime_Detection](https://github.com/shaqian/flutter_realtime_detection).

## Run test cases

`flutter test test/tflite_test.dart`