Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sharpiless/yolov5-deepsort-inference

Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中
https://github.com/sharpiless/yolov5-deepsort-inference

deepsort mot object-detection tracking yolov5 yolov5-deepsort-inference

Last synced: 1 day ago
JSON representation

Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

Awesome Lists containing this project

README

        

# **YOLOv5 + DeepSort 用于目标跟踪与计数**
🚗🚶‍♂️ **使用 YOLOv5 和 DeepSort 实现车辆与行人实时跟踪与计数**

[![GitHub stars](https://img.shields.io/github/stars/Sharpiless/Yolov5-deepsort-inference?style=social)](https://github.com/Sharpiless/Yolov5-deepsort-inference) [![GitHub forks](https://img.shields.io/github/forks/Sharpiless/Yolov5-deepsort-inference?style=social)](https://github.com/Sharpiless/Yolov5-deepsort-inference) [![License](https://img.shields.io/github/license/Sharpiless/Yolov5-deepsort-inference)](https://github.com/Sharpiless/Yolov5-deepsort-inference/blob/main/LICENSE)

最新版本:[https://github.com/Sharpiless/YOLOv11-DeepSort](https://github.com/Sharpiless/YOLOv11-DeepSort)

---

## **📌 项目简介**

本项目将 **YOLOv5** 与 **DeepSort** 相结合,实现了对目标的实时跟踪与计数。提供了一个封装的 `Detector` 类,方便将此功能嵌入到自定义项目中。

🔗 **阅读完整博客**:[【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数](https://blog.csdn.net/weixin_44936889/article/details/112002152)

---

## **🚀 核心功能**

- **目标跟踪**:实时跟踪车辆与行人。
- **计数功能**:轻松统计视频流中的车辆或行人数。
- **封装式接口**:`Detector` 类封装了检测与跟踪逻辑,便于集成。
- **高度自定义**:支持训练自己的 YOLOv5 模型并无缝接入框架。

---

## **🔧 使用说明**

### **安装依赖**
```bash
pip install -r requirements.txt
```

确保安装了 `requirements.txt` 文件中列出的所有依赖。
### **运行 Demo**
```bash
python demo.py
```
---

## **🛠️ 开发说明**

### **YOLOv5 检测器**

```python
class Detector(baseDet):

def __init__(self):
super(Detector, self).__init__()
self.init_model()
self.build_config()

def init_model(self):

self.weights = 'weights/yolov5m.pt'
self.device = '0' if torch.cuda.is_available() else 'cpu'
self.device = select_device(self.device)
model = attempt_load(self.weights, map_location=self.device)
model.to(self.device).eval()
model.half()
# torch.save(model, 'test.pt')
self.m = model
self.names = model.module.names if hasattr(
model, 'module') else model.names

def preprocess(self, img):

img0 = img.copy()
img = letterbox(img, new_shape=self.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.half() # 半精度
img /= 255.0 # 图像归一化
if img.ndimension() == 3:
img = img.unsqueeze(0)

return img0, img

def detect(self, im):

im0, img = self.preprocess(im)

pred = self.m(img, augment=False)[0]
pred = pred.float()
pred = non_max_suppression(pred, self.threshold, 0.4)

pred_boxes = []
for det in pred:

if det is not None and len(det):
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()

for *x, conf, cls_id in det:
lbl = self.names[int(cls_id)]
if not lbl in ['person', 'car', 'truck']:
continue
x1, y1 = int(x[0]), int(x[1])
x2, y2 = int(x[2]), int(x[3])
pred_boxes.append(
(x1, y1, x2, y2, lbl, conf))

return im, pred_boxes
```
- 调用 `self.detect()` 方法返回图像和预测结果
### **DeepSort 追踪器**

```python
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
```
- 调用 `self.update()` 方法更新追踪结果
---

## **📊 训练自己的模型**

如果需要训练自定义的 YOLOv5 模型,请参考以下教程:
[【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862)

训练完成后,将模型权重文件放置于 `weights` 文件夹中。

---

## **📦 API 调用**

### **初始化检测器**
```python
from AIDetector_pytorch import Detector

det = Detector()
```

### **调用检测接口**
```python
func_status = {}
func_status['headpose'] = None

result = det.feedCap(im, func_status)
```

- `im`: 输入的 BGR 图像。
- `result['frame']`: 检测结果的可视化图像。

---

## **✨ 可视化效果**

![效果图](https://img-blog.csdnimg.cn/20201231090541223.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70)

---

## **📚 联系作者**
- Bilibili: [https://space.bilibili.com/470550823](https://space.bilibili.com/470550823)
- CSDN: [https://blog.csdn.net/weixin_44936889](https://blog.csdn.net/weixin_44936889)
- AI Studio: [https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156)
- GitHub: [https://github.com/Sharpiless](https://github.com/Sharpiless)

---



Star History Chart

## **💡 许可证**

本项目遵循 **GNU General Public License v3.0** 协议。
**标明目标检测部分来源**:[https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)