Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shaypal5/skift
scikit-learn wrappers for Python fastText.
https://github.com/shaypal5/skift
Last synced: about 23 hours ago
JSON representation
scikit-learn wrappers for Python fastText.
- Host: GitHub
- URL: https://github.com/shaypal5/skift
- Owner: shaypal5
- License: mit
- Created: 2018-02-03T11:37:21.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2022-06-07T15:07:07.000Z (over 2 years ago)
- Last Synced: 2024-10-01T06:25:52.005Z (about 1 month ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 634 KB
- Stars: 234
- Watchers: 10
- Forks: 23
- Open Issues: 1
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
- awesome-python-machine-learning-resources - GitHub - 9% open · ⏱️ 07.06.2022): (文本数据和NLP)
README
skift |skift_icon|
##################
|PyPI-Status| |Downloads| |PyPI-Versions| |Build-Status| |Codecov| |Codefactor| |LICENCE|.. |skift_icon| image:: https://github.com/shaypal5/skift/blob/be1f8e84d311f926fd39e8ea421525782b4cb39f/skift.png
``scikit-learn`` wrappers for Python ``fastText``.
.. code-block:: python
>>> from skift import FirstColFtClassifier
>>> df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl'])
>>> sk_clf = FirstColFtClassifier(lr=0.3, epoch=10)
>>> sk_clf.fit(df[['txt']], df['lbl'])
>>> sk_clf.predict([['woof']])
[0].. contents::
.. section-numbering::
Installation
============Dependencies:
* ``numpy``
* ``scipy``
* ``scikit-learn``
* The ``fasttext`` Python package.. code-block:: bash
pip install skift
Configuration
=============Because ``fasttext`` reads input data from files, ``skift`` has to dump the input data into temporary files for ``fasttext`` to use. A dedicated folder is created for those files on the filesystem. By default, this storage is allocated in the system temporary storage location (i.e. /tmp on \*nix systems). To override this default location, use the ``SKIFT_TEMP_DIR`` environment variable:
.. code-block:: bash
export SKIFT_TEMP_DIR=/path/to/desired/temp/folder
**NOTE:** The directory will be created if it does not already exist.
Features
========* Adheres to the ``scikit-learn`` classifier API, including ``predict_proba``.
* Also caters to the common use case of ``pandas.DataFrame`` inputs.
* Enables easy stacking of ``fastText`` with other types of ``scikit-learn``-compliant classifiers.
* Pickle-able classifier objects.
* Built around the `official fasttext Python package `_.
* Pure python.
* Supports Python 3.5+.
* `Fully tested on Linux, OSX and Windows operating systems `_.Wrappers
=========``fastText`` works only on text data, which means that it will only use a single column from a dataset which might contain many feature columns of different types. As such, a common use case is to have the ``fastText`` classifier use a single column as input, ignoring other columns. This is especially true when ``fastText`` is to be used as one of several classifiers in a stacking classifier, with other classifiers using non-textual features.
``skift`` includes several ``scikit-learn``-compatible wrappers (for the `official `_ ``fastText`` Python package) which cater to these use cases.
**NOTICE:** Any additional keyword arguments provided to the classifier constructor, besides those required, will be forwarded to the ``fastText.train_supervised`` method on every call to ``fit``.
Standard wrappers
-----------------These wrappers do not make additional assumptions on input besides those commonly made by ``scikit-learn`` classifies; i.e. that input is a 2d ``ndarray`` object and such.
* ``FirstColFtClassifier`` - An sklearn classifier adapter for fasttext that takes the first column of input ``ndarray`` objects as input.
.. code-block:: python
>>> from skift import FirstColFtClassifier
>>> df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl'])
>>> sk_clf = FirstColFtClassifier(lr=0.3, epoch=10)
>>> sk_clf.fit(df[['txt']], df['lbl'])
>>> sk_clf.predict([['woof']])
[0]* ``IdxBasedFtClassifier`` - An sklearn classifier adapter for fasttext that takes input by column index. This is set on object construction by providing the ``input_ix`` parameter to the constructor.
.. code-block:: python
>>> from skift import IdxBasedFtClassifier
>>> df = pandas.DataFrame([[5, 'woof', 0], [83, 'meow', 1]], columns=['count', 'txt', 'lbl'])
>>> sk_clf = IdxBasedFtClassifier(input_ix=1, lr=0.4, epoch=6)
>>> sk_clf.fit(df[['count', 'txt']], df['lbl'])
>>> sk_clf.predict([['woof']])
[0]pandas-dependent wrappers
-------------------------These wrappers assume the ``X`` parameter given to ``fit``, ``predict``, and ``predict_proba`` methods is a ``pandas.DataFrame`` object:
* ``FirstObjFtClassifier`` - An sklearn adapter for fasttext using the first column of ``dtype == object`` as input.
.. code-block:: python
>>> from skift import FirstObjFtClassifier
>>> df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl'])
>>> sk_clf = FirstObjFtClassifier(lr=0.2)
>>> sk_clf.fit(df[['txt']], df['lbl'])
>>> sk_clf.predict([['woof']])
[0]* ``ColLblBasedFtClassifier`` - An sklearn adapter for fasttext taking input by column label. This is set on object construction by providing the ``input_col_lbl`` parameter to the constructor.
.. code-block:: python
>>> from skift import ColLblBasedFtClassifier
>>> df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl'])
>>> sk_clf = ColLblBasedFtClassifier(input_col_lbl='txt', epoch=8)
>>> sk_clf.fit(df[['txt']], df['lbl'])
>>> sk_clf.predict([['woof']])
[0]* ``SeriesFtClassifier`` - An sklearn adapter for fasttext taking a Pandas Series as input.
.. code-block:: python
>>> from skift import SeriesFtClassifier
>>> df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl'])
>>> sk_clf = SeriesFtClassifier(input_col_lbl='txt', epoch=8)
>>> sk_clf.fit(df['txt'], df['lbl'])
>>> sk_clf.predict(['woof'])
>>> sk_clf.predict(df['txt'])Hyperparameter auto-tuning
----------------------------It's possible to pass a validation set to ``fit()`` in order to optimize the hyper-parameters.
First, to adjust the `auto-tune settings `_, the corresponding keyword arguments can be passed to the constructor (if none are passed the default settings are used):
.. code-block:: python
>>> from skift import SeriesFtClassifier
>>> df_train = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl'])
>>> df_val = pandas.DataFrame([['woof woof', 0], ['meow meow', 1]], columns=['txt', 'lbl'])
>>> sk_clf = SeriesFtClassifier(epoch=8, autotuneDuration=5)Then, the validation dataframe (or series, in this case, since we constructed a ``SeriesFtClassifier``) and label column should be provided to the ``fit()`` method:
.. code-block:: python
>>> sk_clf.fit(df_train['txt'], df_train['lbl'], X_validation=df_val['txt'], y_validation=df_val['lbl'])
Or simply by position:
.. code-block:: python
>>> sk_clf.fit(df_train['txt'], df_train['lbl'], df_val['txt'], df_val['lbl'])
Using Pre-trained word vectors
-------------------------------This is done in the exact same way as with the Python module or the fastText CLI, but not setting the right vector dimensions in the constructor (identical to the dimensions of the pretrained vectors you are using) will crash fastText without explanation, so we provide an example:
.. code-block:: python
from skift import SeriesFtClassifier
ft_clf = SeriesFtClassifier(
autotuneDuration=900,
pretrainedVectors='/Users/myuser/data/word_vectors/crawl-300d-2M.vec',
dim=300,
)In this case, not providing the constructor with ``dim=300`` would bring about a crash when calling ``ft_clf.fit()``.
Contributing
============Package author and current maintainer is Shay Palachy ([email protected]); You are more than welcome to approach him for help. Contributions are very welcomed.
Installing for development
----------------------------Clone:
.. code-block:: bash
git clone [email protected]:shaypal5/skift.git
Install in development mode, including test dependencies:
.. code-block:: bash
cd skift
pip install -e '.[test]'To also install ``fasttext``, see instructions in the Installation section.
Running the tests
-----------------To run the tests use:
.. code-block:: bash
cd skift
pytestAdding documentation
--------------------The project is documented using the `numpy docstring conventions`_, which were chosen as they are perhaps the most widely-spread conventions that are both supported by common tools such as Sphinx and result in human-readable docstrings. When documenting code you add to this project, follow `these conventions`_.
.. _`numpy docstring conventions`: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
.. _`these conventions`: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txtAdditionally, if you update this ``README.rst`` file, use ``python setup.py checkdocs`` to validate it compiles.
Credits
=======Created by Shay Palachy ([email protected]).
Contributions:
* `Dimid Duchovny _` contributed the ``SeriesFtClassifier`` class and the hyperparameter auto-tuning capability.
Fixes: `uniaz `_, `crouffer `_, `amirzamli `_ and `sgt `_.
.. |PyPI-Status| image:: https://img.shields.io/pypi/v/skift.svg
:target: https://pypi.python.org/pypi/skift.. |PyPI-Versions| image:: https://img.shields.io/pypi/pyversions/skift.svg
:target: https://pypi.python.org/pypi/skift.. |Build-Status| image:: https://github.com/shaypal5/skift/actions/workflows/test.yml/badge.svg
:target: https://github.com/shaypal5/skift/actions/workflows/test.yml.. |LICENCE| image:: https://github.com/shaypal5/skift/blob/master/mit_license_badge.svg
:target: https://github.com/shaypal5/skift/blob/master/LICENSE.. https://img.shields.io/github/license/shaypal5/skift.svg
.. |Codecov| image:: https://codecov.io/github/shaypal5/skift/coverage.svg?branch=master
:target: https://codecov.io/github/shaypal5/skift?branch=master.. |Downloads| image:: https://pepy.tech/badge/skift
:target: https://pepy.tech/project/skift
:alt: PePy stats.. |Codefactor| image:: https://www.codefactor.io/repository/github/shaypal5/skift/badge?style=plastic
:target: https://www.codefactor.io/repository/github/shaypal5/skift
:alt: Codefactor code quality.. Trigerring Travis builds