Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shenweichen/DeepCTR
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .
https://github.com/shenweichen/DeepCTR
autoint click-through-rate ctr deep-learning deepcross deepfm deepinterestevolutionnetwork deepinterestnetwork dien din esmm factorization-machines ffm fgcnn mlr mmoe nfm ple recommendation xdeepfm
Last synced: 8 days ago
JSON representation
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .
- Host: GitHub
- URL: https://github.com/shenweichen/DeepCTR
- Owner: shenweichen
- License: apache-2.0
- Created: 2017-10-07T07:40:37.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2024-08-09T12:11:01.000Z (3 months ago)
- Last Synced: 2024-10-14T20:27:28.834Z (21 days ago)
- Topics: autoint, click-through-rate, ctr, deep-learning, deepcross, deepfm, deepinterestevolutionnetwork, deepinterestnetwork, dien, din, esmm, factorization-machines, ffm, fgcnn, mlr, mmoe, nfm, ple, recommendation, xdeepfm
- Language: Python
- Homepage: https://deepctr-doc.readthedocs.io/en/latest/index.html
- Size: 7.33 MB
- Stars: 7,548
- Watchers: 178
- Forks: 2,209
- Open Issues: 104
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesomeai - Click-Through Rate Prediction
- awesome-ai-awesomeness - Click-Through Rate Prediction
- awesome-ai-awesomeness - Click-Through Rate Prediction
- awesome-list - DeepCTR - Easy-to-use,Modular and Extendible package of deep-learning based CTR models. (Recommendation, Advertisement & Ranking / Others)
- my-awesome - shenweichen/DeepCTR - through-rate,ctr,deep-learning,deepcross,deepfm,deepinterestevolutionnetwork,deepinterestnetwork,dien,din,esmm,factorization-machines,ffm,fgcnn,mlr,mmoe,nfm,ple,recommendation,xdeepfm pushed_at:2024-08 star:7.5k fork:2.2k Easy-to-use,Modular and Extendible package of deep-learning based CTR models . (Python)
- StarryDivineSky - shenweichen/DeepCTR
README
# DeepCTR
[![Python Versions](https://img.shields.io/pypi/pyversions/deepctr.svg)](https://pypi.org/project/deepctr)
[![TensorFlow Versions](https://img.shields.io/badge/TensorFlow-1.4+/2.0+-blue.svg)](https://pypi.org/project/deepctr)
[![Downloads](https://pepy.tech/badge/deepctr)](https://pepy.tech/project/deepctr)
[![PyPI Version](https://img.shields.io/pypi/v/deepctr.svg)](https://pypi.org/project/deepctr)
[![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr.svg
)](https://github.com/shenweichen/deepctr/issues)[![Documentation Status](https://readthedocs.org/projects/deepctr-doc/badge/?version=latest)](https://deepctr-doc.readthedocs.io/)
![CI status](https://github.com/shenweichen/deepctr/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/shenweichen/DeepCTR/branch/master/graph/badge.svg)](https://codecov.io/gh/shenweichen/DeepCTR)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/d4099734dc0e4bab91d332ead8c0bdd0)](https://www.codacy.com/gh/shenweichen/DeepCTR?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepCTR&utm_campaign=Badge_Grade)
[![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#DisscussionGroup)
[![License](https://img.shields.io/github/license/shenweichen/deepctr.svg)](https://github.com/shenweichen/deepctr/blob/master/LICENSE)DeepCTR is a **Easy-to-use**, **Modular** and **Extendible** package of deep-learning based CTR models along with lots of
core components layers which can be used to easily build custom models.You can use any complex model with `model.fit()`
,and `model.predict()` .- Provide `tf.keras.Model` like interfaces for **quick experiment**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr)
- Provide `tensorflow estimator` interface for **large scale data** and **distributed training**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord)
- It is compatible with both `tf 1.x` and `tf 2.x`.Some related projects:
- DeepMatch: https://github.com/shenweichen/DeepMatch
- DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-TorchLet's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese
Introduction](https://zhuanlan.zhihu.com/p/53231955)) and [welcome to join us!](./CONTRIBUTING.md)## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| FwFM | [WWW 2018][Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) |
| Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| FLEN | [arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) |
| BST | [DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| FEFM and DeepFEFM | [arxiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
| EDCN | [KDD 2021][Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) |## Citation
- Weichen Shen. (2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR
models. https://github.com/shenweichen/deepctr.If you find this code useful in your research, please cite it using the following BibTeX:
```bibtex
@misc{shen2017deepctr,
author = {Weichen Shen},
title = {DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models},
year = {2017},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/shenweichen/deepctr}},
}
```## DisscussionGroup
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)|## Main contributors([welcome to join us!](./CONTRIBUTING.md))
Shen Weichen
Alibaba Group
Zan Shuxun
Alibaba Group
Harshit Pande
Amazon
Lai Mincai
ByteDance
Li Zichao
ByteDance
Tan Tingyi
Chongqing University
of Posts and
Telecommunications