Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/shenweichen/DeepCTR-Torch

【PyTorch】Easy-to-use,Modular and Extendible package of deep-learning based CTR models.
https://github.com/shenweichen/DeepCTR-Torch

ctr-models deep-learning deepctr deepctr-pytorch deepfm deeprec fibinet torchrec xdeepfm

Last synced: 2 months ago
JSON representation

【PyTorch】Easy-to-use,Modular and Extendible package of deep-learning based CTR models.

Awesome Lists containing this project

README

        

# DeepCTR-Torch

[![Python Versions](https://img.shields.io/pypi/pyversions/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch)
[![Downloads](https://pepy.tech/badge/deepctr-torch)](https://pepy.tech/project/deepctr-torch)
[![PyPI Version](https://img.shields.io/pypi/v/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch)
[![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr-torch.svg
)](https://github.com/shenweichen/deepctr-torch/issues)

[![Documentation Status](https://readthedocs.org/projects/deepctr-torch/badge/?version=latest)](https://deepctr-torch.readthedocs.io/)
![CI status](https://github.com/shenweichen/deepctr-torch/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/shenweichen/DeepCTR-Torch/branch/master/graph/badge.svg?token=m6v89eYOjp)](https://codecov.io/gh/shenweichen/DeepCTR-Torch)
[![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#disscussiongroup)
[![License](https://img.shields.io/github/license/shenweichen/deepctr-torch.svg)](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE)

PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR).

DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`.

Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955))

## Models List

| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |

## DisscussionGroup & Related Projects

- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions

|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)|

- Related Projects

- [AlgoNotes](https://github.com/shenweichen/AlgoNotes)
- [DeepCTR](https://github.com/shenweichen/DeepCTR)
- [DeepMatch](https://github.com/shenweichen/DeepMatch)
- [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding)

## Main Contributors([welcome to join us!](./CONTRIBUTING.md))




pic

Shen Weichen

Alibaba Group




pic

Zan Shuxun

Alibaba Group




pic

Wang Ze

Meituan




pic

Zhang Wutong

Tencent




pic

Zhang Yuefeng

Peking University






pic

Huo Junyi


University of Southampton




pic

Zeng Kai


SenseTime




pic

Chen K


NetEase




pic

Cheng Weiyu


Shanghai Jiao Tong University




pic

Tang


Tongji University