Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shenweichen/DeepCTR-Torch
【PyTorch】Easy-to-use,Modular and Extendible package of deep-learning based CTR models.
https://github.com/shenweichen/DeepCTR-Torch
ctr-models deep-learning deepctr deepctr-pytorch deepfm deeprec fibinet torchrec xdeepfm
Last synced: about 1 month ago
JSON representation
【PyTorch】Easy-to-use,Modular and Extendible package of deep-learning based CTR models.
- Host: GitHub
- URL: https://github.com/shenweichen/DeepCTR-Torch
- Owner: shenweichen
- License: apache-2.0
- Created: 2019-09-06T13:00:06.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-07-02T10:33:44.000Z (6 months ago)
- Last Synced: 2024-10-29T15:33:05.564Z (about 2 months ago)
- Topics: ctr-models, deep-learning, deepctr, deepctr-pytorch, deepfm, deeprec, fibinet, torchrec, xdeepfm
- Language: Python
- Homepage: https://deepctr-torch.readthedocs.io/en/latest/index.html
- Size: 5.31 MB
- Stars: 3,010
- Watchers: 46
- Forks: 704
- Open Issues: 52
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesome-list - DeepCTR-Torch - Easy-to-use,Modular and Extendible package of deep-learning based CTR models. (Recommendation, Advertisement & Ranking / Others)
- awesome-drug-discovery - [Python Reference2
README
# DeepCTR-Torch
[![Python Versions](https://img.shields.io/pypi/pyversions/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch)
[![Downloads](https://pepy.tech/badge/deepctr-torch)](https://pepy.tech/project/deepctr-torch)
[![PyPI Version](https://img.shields.io/pypi/v/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch)
[![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr-torch.svg
)](https://github.com/shenweichen/deepctr-torch/issues)[![Documentation Status](https://readthedocs.org/projects/deepctr-torch/badge/?version=latest)](https://deepctr-torch.readthedocs.io/)
![CI status](https://github.com/shenweichen/deepctr-torch/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/shenweichen/DeepCTR-Torch/branch/master/graph/badge.svg?token=m6v89eYOjp)](https://codecov.io/gh/shenweichen/DeepCTR-Torch)
[![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#disscussiongroup)
[![License](https://img.shields.io/github/license/shenweichen/deepctr-torch.svg)](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE)PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR).
DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`.
Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955))
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |## DisscussionGroup & Related Projects
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)|- Related Projects
- [AlgoNotes](https://github.com/shenweichen/AlgoNotes)
- [DeepCTR](https://github.com/shenweichen/DeepCTR)
- [DeepMatch](https://github.com/shenweichen/DeepMatch)
- [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding)## Main Contributors([welcome to join us!](./CONTRIBUTING.md))
Shen Weichen
Alibaba Group
Zan Shuxun
Alibaba Group
Wang Ze
Meituan
Zhang Wutong
Tencent
Zhang Yuefeng
Peking University
Huo Junyi
University of Southampton
Zeng Kai
SenseTime
Chen K
NetEase
Cheng Weiyu
Shanghai Jiao Tong University
Tang
Tongji University