Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shenweichen/DeepMatch
A deep matching model library for recommendations & advertising. It's easy to train models and to export representation vectors which can be used for ANN search.
https://github.com/shenweichen/DeepMatch
collaborative-filtering comirec dssm factorization-machines matching mind recommendation youtubednn
Last synced: 7 days ago
JSON representation
A deep matching model library for recommendations & advertising. It's easy to train models and to export representation vectors which can be used for ANN search.
- Host: GitHub
- URL: https://github.com/shenweichen/DeepMatch
- Owner: shenweichen
- License: apache-2.0
- Created: 2020-04-06T04:07:33.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-05-14T09:35:43.000Z (6 months ago)
- Last Synced: 2024-10-29T15:33:43.582Z (10 days ago)
- Topics: collaborative-filtering, comirec, dssm, factorization-machines, matching, mind, recommendation, youtubednn
- Language: Python
- Homepage: https://deepmatch.readthedocs.io/en/latest/
- Size: 1.34 MB
- Stars: 2,224
- Watchers: 50
- Forks: 530
- Open Issues: 40
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - shenweichen/DeepMatch
README
# DeepMatch
[![Python Versions](https://img.shields.io/pypi/pyversions/deepmatch.svg)](https://pypi.org/project/deepmatch)
[![TensorFlow Versions](https://img.shields.io/badge/TensorFlow-1.9+/2.0+-blue.svg)](https://pypi.org/project/deepmatch)
[![Downloads](https://pepy.tech/badge/deepmatch)](https://pepy.tech/project/deepmatch)
[![PyPI Version](https://img.shields.io/pypi/v/deepmatch.svg)](https://pypi.org/project/deepmatch)
[![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepmatch.svg
)](https://github.com/shenweichen/deepmatch/issues)[![Documentation Status](https://readthedocs.org/projects/deepmatch/badge/?version=latest)](https://deepmatch.readthedocs.io/)
![CI status](https://github.com/shenweichen/deepmatch/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/shenweichen/DeepMatch/branch/master/graph/badge.svg)](https://codecov.io/gh/shenweichen/DeepMatch)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/c5a2769ec35444d8958f6b58ff85029b)](https://www.codacy.com/gh/shenweichen/DeepMatch/dashboard?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepMatch&utm_campaign=Badge_Grade)
[![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](https://github.com/shenweichen/DeepMatch#disscussiongroup)
[![License](https://img.shields.io/github/license/shenweichen/deepmatch.svg)](https://github.com/shenweichen/deepmatch/blob/master/LICENSE)DeepMatch is a deep matching model library for recommendations & advertising. It's easy to **train models** and to **export representation vectors** for user and item which can be used for **ANN search**.You can use any complex model with `model.fit()`and `model.predict()` .
Let's [**Get Started!**](https://deepmatch.readthedocs.io/en/latest/Quick-Start.html) or [**Run examples**](./examples/colab_MovieLen1M_YoutubeDNN.ipynb) !
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FM | [ICDM 2010][Factorization Machines](https://www.researchgate.net/publication/220766482_Factorization_Machines) |
| DSSM | [CIKM 2013][Deep Structured Semantic Models for Web Search using Clickthrough Data](https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/) |
| YoutubeDNN | [RecSys 2016][Deep Neural Networks for YouTube Recommendations](https://www.researchgate.net/publication/307573656_Deep_Neural_Networks_for_YouTube_Recommendations) |
| NCF | [WWW 2017][Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031) |
| SDM | [CIKM 2019][SDM: Sequential Deep Matching Model for Online Large-scale Recommender System](https://arxiv.org/abs/1909.00385) |
| MIND | [CIKM 2019][Multi-interest network with dynamic routing for recommendation at Tmall](https://arxiv.org/pdf/1904.08030) |
| COMIREC | [KDD 2020][Controllable Multi-Interest Framework for Recommendation](https://arxiv.org/pdf/2005.09347.pdf) |## Contributors([welcome to join us!](./CONTRIBUTING.md))
Shen Weichen
Alibaba Group
Wang Zhe
Baidu Inc.
Chen Leihui
Alibaba Group
LeoCai
ByteDance
Li Yuan
Tencent
Yang Jieyu
Ant Group
Meng Yifan
DeepCTR
## DisscussionGroup
- [Github Discussions](https://github.com/shenweichen/DeepMatch/discussions)
- Wechat Discussions|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)|