Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/shenweichen/deepctr

Easy-to-use,Modular and Extendible package of deep-learning based CTR models .
https://github.com/shenweichen/deepctr

autoint click-through-rate ctr deep-learning deepcross deepfm deepinterestevolutionnetwork deepinterestnetwork dien din esmm factorization-machines ffm fgcnn mlr mmoe nfm ple recommendation xdeepfm

Last synced: 15 days ago
JSON representation

Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

Awesome Lists containing this project

README

        

# DeepCTR

[![Python Versions](https://img.shields.io/pypi/pyversions/deepctr.svg)](https://pypi.org/project/deepctr)
[![TensorFlow Versions](https://img.shields.io/badge/TensorFlow-1.4+/2.0+-blue.svg)](https://pypi.org/project/deepctr)
[![Downloads](https://pepy.tech/badge/deepctr)](https://pepy.tech/project/deepctr)
[![PyPI Version](https://img.shields.io/pypi/v/deepctr.svg)](https://pypi.org/project/deepctr)
[![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr.svg
)](https://github.com/shenweichen/deepctr/issues)

[![Documentation Status](https://readthedocs.org/projects/deepctr-doc/badge/?version=latest)](https://deepctr-doc.readthedocs.io/)
![CI status](https://github.com/shenweichen/deepctr/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/shenweichen/DeepCTR/branch/master/graph/badge.svg)](https://codecov.io/gh/shenweichen/DeepCTR)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/d4099734dc0e4bab91d332ead8c0bdd0)](https://www.codacy.com/gh/shenweichen/DeepCTR?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepCTR&utm_campaign=Badge_Grade)
[![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#DisscussionGroup)
[![License](https://img.shields.io/github/license/shenweichen/deepctr.svg)](https://github.com/shenweichen/deepctr/blob/master/LICENSE)

DeepCTR is a **Easy-to-use**, **Modular** and **Extendible** package of deep-learning based CTR models along with lots of
core components layers which can be used to easily build custom models.You can use any complex model with `model.fit()`
,and `model.predict()` .

- Provide `tf.keras.Model` like interfaces for **quick experiment**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr)
- Provide `tensorflow estimator` interface for **large scale data** and **distributed training**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord)
- It is compatible with both `tf 1.x` and `tf 2.x`.

Some related projects:

- DeepMatch: https://github.com/shenweichen/DeepMatch
- DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-Torch

Let's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese
Introduction](https://zhuanlan.zhihu.com/p/53231955)) and [welcome to join us!](./CONTRIBUTING.md)

## Models List

| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| FwFM | [WWW 2018][Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) |
| Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| FLEN | [arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) |
| BST | [DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| FEFM and DeepFEFM | [arxiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
| EDCN | [KDD 2021][Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) |

## Citation

- Weichen Shen. (2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR
models. https://github.com/shenweichen/deepctr.

If you find this code useful in your research, please cite it using the following BibTeX:

```bibtex
@misc{shen2017deepctr,
author = {Weichen Shen},
title = {DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models},
year = {2017},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/shenweichen/deepctr}},
}
```

## DisscussionGroup

- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions

|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)|

## Main contributors([welcome to join us!](./CONTRIBUTING.md))




pic

Shen Weichen


Alibaba Group




pic

Zan Shuxun

Alibaba Group




pic

Harshit Pande

Amazon




pic

Lai Mincai

ByteDance




pic

Li Zichao

ByteDance




pic

Tan Tingyi

Chongqing University
of Posts and
Telecommunications