Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shenxiangzhuang/pysesd
Time Series Seasonal Extreme Studentized Deviate(S-ESD) in Python
https://github.com/shenxiangzhuang/pysesd
anomaly-detection esd extreme-value-statistics python s-h-esd statistics time-series twitter
Last synced: about 1 month ago
JSON representation
Time Series Seasonal Extreme Studentized Deviate(S-ESD) in Python
- Host: GitHub
- URL: https://github.com/shenxiangzhuang/pysesd
- Owner: shenxiangzhuang
- License: mit
- Created: 2023-06-19T08:49:17.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-10-21T23:02:53.000Z (3 months ago)
- Last Synced: 2024-10-23T06:40:42.585Z (3 months ago)
- Topics: anomaly-detection, esd, extreme-value-statistics, python, s-h-esd, statistics, time-series, twitter
- Language: Python
- Homepage: https://datahonor.com/pysesd/
- Size: 1.25 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[Py]S-ESD
Seasonal Extreme Studentized Deviate(S-ESD) in Python.
# About
Seasonal Extreme Studentized Deviate(S-ESD) in Python.# Installation
Get latest version from PyPI:
```shell
pip install pysesd
```# Getting started
## Simple example
```python
from pysesd.dataset import load_synthetic_ts
from pysesd.sesd import SESDts = load_synthetic_ts()
sesd = SESD(alpha=0.05, hybrid=False, max_outliers=2)
outliers = sesd.fit(ts)
sesd.plot(save=True, fig_dir="../figures", fig_name="simple.png")
```
![](./figures/simple.png)## Twitter example
```python
from pysesd.dataset import load_twitter_ts
from pysesd.sesd import SESDts = load_twitter_ts()
sesd = SESD(alpha=0.05, hybrid=True, max_outliers=int(len(ts) * 0.02))
outliers = sesd.fit(ts)
sesd.plot(save=True, fig_dir="../figures", fig_name="twitter.png")
```
![](./figures/twitter.png)# References
- [twitter/AnomalyDetection](https://github.com/twitter/AnomalyDetection)