https://github.com/shervinea/mit-15-003-data-science-tools
  
  
    Study guides for MIT's 15.003 Data Science Tools 
    https://github.com/shervinea/mit-15-003-data-science-tools
  
bash data-science git manipulation r retrieval sql study-guide visualization
        Last synced: 6 months ago 
        JSON representation
    
Study guides for MIT's 15.003 Data Science Tools
- Host: GitHub
- URL: https://github.com/shervinea/mit-15-003-data-science-tools
- Owner: shervinea
- License: mit
- Created: 2020-08-10T02:23:19.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-08-23T16:27:58.000Z (about 5 years ago)
- Last Synced: 2025-04-08T11:16:02.422Z (7 months ago)
- Topics: bash, data-science, git, manipulation, r, retrieval, sql, study-guide, visualization
- Homepage: https://www.mit.edu/~amidi/teaching/data-science-tools/
- Size: 8.94 MB
- Stars: 1,825
- Watchers: 64
- Forks: 366
- Open Issues: 2
- 
            Metadata Files:
            - Readme: README.md
- License: LICENSE
 
Awesome Lists containing this project
- awesome-list - MIT Data Science Visual Study Guides
README
          # Data Science Tools study guides for MIT's 15.003
## Goal
This repository aims at summing up in the same place all the important notions that are covered in MIT's 15.003 Data Science Tools course and includes:
- **Study guides** for SQL, R, Python, Git and Bash.
- **Conversion guides** between R and Python.
- All elements of the above combined in an **ultimate compilation of concepts**, to have with you at all times!
## Content
#### Study guides
| |
| |
| |
|
|:--:|:--:|:--:|
|Data retrieval with SQL|Data manipulation with R|Data manipulation with Python|
| |
| |
| |
|
|:--:|:--:|:--:|
|Visualization with R|Visualization with Python|Engineering tips|
#### Conversion guides between R and Python
| |
| |
|
|:--:|:--:|
|Data manipulation|Visualization|
#### Super study guide
| |
|
|:--:|
|All the above gathered in one place|
## Website
This material is also available on a dedicated [website](https://www.mit.edu/~amidi/teaching/data-science-tools/), so that you can enjoy reading it from any device.
## Authors
[Afshine Amidi](https://twitter.com/afshinea) (Ecole Centrale Paris, MIT) and [Shervine Amidi](https://twitter.com/shervinea) (Ecole Centrale Paris, Stanford University)