An open API service indexing awesome lists of open source software.

https://github.com/shibing624/nlpcommon

NLP common tools.
https://github.com/shibing624/nlpcommon

Last synced: 7 months ago
JSON representation

NLP common tools.

Awesome Lists containing this project

README

          

# nlpcommon

[![PyPI version](https://badge.fury.io/py/nlpcommon.svg)](https://badge.fury.io/py/nlpcommon)
[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg)](CONTRIBUTING.md)
[![GitHub contributors](https://img.shields.io/github/contributors/shibing624/nlpcommon.svg)](https://github.com/shibing624/nlpcommon/graphs/contributors)
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
[![python_vesion](https://img.shields.io/badge/Python-3.5%2B-green.svg)](requirements.txt)
[![GitHub issues](https://img.shields.io/github/issues/shibing624/nlpcommon.svg)](https://github.com/shibing624/nlpcommon/issues)
[![Wechat Group](http://vlog.sfyc.ltd/wechat_everyday/wxgroup_logo.png?imageView2/0/w/60/h/20)](#Contact)

nlpcommon, Python Text Tool. Python3开发。

**Guide**

- [Feature](#Feature)
- [Install](#install)
- [Usage](#usage)
- [Dataset](#Dataset)
- [Contact](#Contact)
- [Cite](#Cite)
- [Reference](#reference)

# Feature

**nlpcommon** is a python Open Source Toolkit for text classification. The goal is to implement
text analysis algorithm, so as to achieve the use in the production environment.

**nlpcommon** has the characteristics
of clear algorithm, high performance and customizable corpus.

Functions:
### Classifier
- [x] LogisticRegression
- [x] Random Forest
- [x] Decision Tree
- [x] K-Nearest Neighbours
- [x] Naive bayes
- [x] Xgboost
- [x] Support Vector Machine(SVM)
- [x] TextCNN
- [x] TextRNN_Att
- [x] Fasttext
- [x] Bert

### Cluster
- [x] MiniBatchKmeans

While providing rich functions, **nlpcommon** internal modules adhere to low coupling, model adherence to inert loading, dictionary publication, and easy to use.

# Install

- Requirements and Installation

```
pip3 install nlpcommon
```

or

```
git clone https://github.com/shibing624/nlpcommon.git
cd nlpcommon
python3 setup.py install
```

# Usage
## data

### Stopwrods

[examples/base_demo.py](examples/base_demo.py):

```python
import sys

sys.path.append('..')
from nlpcommon import stopwords

if __name__ == '__main__':
print(len(stopwords), stopwords)
```

output:

```shell
2438 {'.', '大家', '孰知', '至于', './', '知道', '二话没说', '一何', '从宽', 'especially' ... }
```

# Contact

- Issue(建议):[![GitHub issues](https://img.shields.io/github/issues/shibing624/nlpcommon.svg)](https://github.com/shibing624/nlpcommon/issues)
- 邮件我:xuming: xuming624@qq.com
- 微信我:加我*微信号:xuming624*, 进Python-NLP交流群,备注:*姓名-公司名-NLP*

# Cite

如果你在研究中使用了nlpcommon,请按如下格式引用:

```latex
@misc{nlpcommon,
title={nlpcommon: Common tool for text NLP},
author={Ming Xu},
howpublished={https://github.com/shibing624/nlpcommon},
year={2022}
}
```

# License

授权协议为 [The Apache License 2.0](LICENSE),可免费用做商业用途。请在产品说明中附加nlpcommon的链接和授权协议。

# Contribute
项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:

- 在`tests`添加相应的单元测试
- 使用`python setup.py test`来运行所有单元测试,确保所有单测都是通过的

之后即可提交PR。

# Reference

- pytextclassifier